
Algorithms and methods for large-scale
genome rearrangements identification

Jose Antonio Arjona Medina

Department of Computer Architecture
University of Málaga

This dissertation is submitted for the degree of
Doctor of Philosophy in Computer Science

Artificial Intelligence and Software

Engineering Doctorate Program June 2017

To my parents Julia and Jose Antonio and my sister Julia María . . .

Declaration

Dr. D. Oswaldo Trelles Salazar.
Profesor Catedrático del Departamento de
Arquitectura de Computadores de la
Universidad de Málaga.

CERTIFICA:

Que la memoria titulada “Algorithms and methods for large-scale genome rearrangements
identification”, ha sido realizada por D. Jose Antonio Arjona Medina bajo mi dirección en el
Departamento de Arquitectura de Computadores de la Universidad de Málaga y constituye la
Tesis que presenta para optar al grado de Doctor en Ingeniería Informática.

Málaga, Junio de 2017

Dr. D. Oswaldo Trelles Salazar
Director de la tesis.

Jose Antonio Arjona Medina
June 2017

Acknowledgements

This work is the result of many years of work and the outcome of a learning process that I
went through with the help of many people that I want to thank.

First, to my parents for providing me education and their guidance, encouragement and
great example throughout my whole life made me develop my potential and made this thesis
possible in the first place. My sister, whose love and support sustained me throughout this
work, also deserves my wholehearted thanks..

Also to my teachers in high school, especially my math teacher Paco Laure who woke up
my attention to science. I would like to thank my biologist friends Victor Ruiz and Paulina
Flores for many hours of inspiring conversations, Daniel Cebrián for his support and advices
and Elke Strobl for her valuable corrections and unconditional moral support.

I would like to express my gratitude to my old colleges at RISC Software, especially to
Michael Krieger and Paul Heinzlreiter for their corrections, and my new colleagues at the
Institute of Bioinformatics at the Johannes Kepler University in Linz, Austria, especially
Gundula Povysil and Andreas Mayr for their comments and suggestions in some sections of
this thesis.

Over the last four years I have spent the most productive time at the BITLAB research
group. I am very grateful to all of them: Antonio Muñoz, Eugenia Ulzurrun, Esteban Pérez,
Sergio Díaz and especially to Oscar Torreño who I spent the most time working with and
who was always there to offer his help and valuable advices.

I would like to express my special thanks of gratitude to my professor Dr. Oswaldo
Trelles, who offered me the opportunity to work in his group and learn from his invaluable
experience. I owe him a very special gratitude for being my advisor and a continuous
supporter of my studies and related research. I am very grateful for his patience, motivation
and immense knowledge. His guidance helped me all the time in planning, organizing and
writing this thesis. I could not have imagined a better advisor and mentor for my Ph.D. study.

Finally, must thank all the financial support offer by the Instituto de Salud Carlos
III (“Instituto Nacional de Bioinformática” (INB-GN5), RIRAAF (RD07/0064/0017 and
RD12/0013/0006) and Plataforma tecnológica de Recursos Biomoleculares y Bioinformáti-

viii

cos (PT13/0001/0012)); Junta de Andalucía (Plataforma computacional de alto rendimiento
para la gestión y análisis de datos clínico-genéticos (P10-TIC-6108)) and the European
Commision funded project Mr.Symbiomath, under the 7th framework programme grant
agreement no. 324554, whose funds made me enjoy a two year investigation stay at RISC
Software GmbH company part of the Johannes Kepler University in Linz.

Abstract

DNA rearrangements are one of the main causes of evolution and their effects can be observed
on new species, new biological functions, etc. Short-scale genome rearrangements such
as insertions, deletions or substitutions have been profusely studied and there are accepted
models to detect them.

However, methods to identify large-scale genome rearrangements (LSGR) still suffer
from limitations and lack of precision mostly because an accepted formal definition of
Synteny Block (SB) is still missing. The SB concept refers to conserved regions that share
the same order and strand between two genomes. There exist some methods to detect SBs,
but they avoid dealing with repetitions or restrict the search just for the coding part in order
to keep the model simple. The refinement of SBs’ edges is also an open problem.

This thesis by compendium addresses the formal definition of SBs starting from High-
Scoring Segments Pairs (HSPs), which are accepted and well known. The first target was
focused to the SB detection as a combination of HSPs, including repetitions, which increased
the model complexity. As a result, a more precise method came up improving the state-of-art
quality performance [6].

This method applies rules based on SB adjacency and also allows detecting LSGR and
categorizes them as inversions, translocations or duplications. As a consequence, a framework
to deal with LSGR for organisms with one chromosome was developed.

Afterwards, in a second article [5], the framework is applied to refine the SBs’ edges.
In a novel approach, repetitions flanking the SBs are used to exploit sequence redundancy
in order to refine SB boundaries. Performing a multiple alignment of those repetitions, an
identity vector of the consensus sequence and the identity vector for SBs are calculated. A
Finite State Machine is designed to detect transition points in the difference between such
vectors. As a result, transition points demarcate the beginning and ending of SBs [5]. The
method is also shown to be helpful for detecting breakpoints (BP). The BP appears as the
region (or point) between two adjacent SBs. The method does not force the BP to be a region
or a point but depends on the alignment transitions within the SBs and repetitions.

x

The method is applied in a third manuscript, which faces a metagenome analysis use case
[76]. It is well known that the information stored in current databases does not necessarily
correspond to the uncultured samples contained in a metagenome, and it is possible to
imagine a LSGR occurring in such organisms making difficult the mapping of reads. It
shows that metagenome reads mapping over exclusive regions (regions that are not share
with other genomes) from a certain genome strongly support the genome presence in the
metagenome. Exclusive regions are easily derived from multiple genome comparison (MGC),
as the regions not being part of any SB.

A SB definition under a MGC environment is more precise than a pairwise definition,
since it allows for a SB refinement following a similar approach described in the second pub-
lication (using SBs in different genomes instead of aligning repetitions). This SB definition
also solves the contradiction of the BPs definition mentioned in the second publication [5],
which states that under pairwise SB definition, a region detected as BP in one comparison
can be part of a SB in another comparison.

The SB definition under MGC environment also provides accurate information for the
rearrangement reconstruction towards an approximation of the true last common ancestor.
In addition, it provides a solution for the granularity problem in the SB detection: starting
with small and well-conserved SBs and through rearrangement reconstruction gradually
increasing the length of the SB.

Expected results from this line of work point towards a definition of a metric aimed to
obtain a more accurate inter-genome distance, combining similarity between sequences and
rearrangements frequency.

Table of contents

List of figures xiii

1 Introduction 1
1.1 Research objectives . 3
1.2 Results . 3
1.3 Contribution of this thesis . 4
1.4 Outline of the Thesis . 5

2 Background 7
2.1 Synteny Blocks and Break Points . 7
2.2 The granularity problem in Synteny Block detection 8
2.3 The Break Point definition . 9
2.4 Sorting Permutation Problem . 10
2.5 Some remarks regarding current Sorting Permutations methods approaches 12

3 Systems and Methods 13
3.1 Introduction . 13
3.2 Synteny Block definition . 14
3.3 The Unitary Conserved Element problem 19
3.4 Transitivity property of Synteny Blocks: Inferring less conserved HSPs . . 22
3.5 Rearrangements detection and reconstruction via Unitary Synteny Block . . 24

3.5.1 Synteny Block concatenation . 24
3.5.2 Insertions and deletions . 25
3.5.3 Duplications . 25
3.5.4 Inversions . 26
3.5.5 Transpositions . 27

4 Results and discussion 29

xii Table of contents

5 Conclusions and future work 37
5.1 Conclusions . 37
5.2 Future work . 38

5.2.1 Detecting Break Points using a Machine Learning approach 39

References 41

Appendix A Sequence comparison algorithms 49
A.1 Pairwise sequence alignments . 49
A.2 Multiple sequence alignment algorithms 50
A.3 New strategies: homology search methods 51
A.4 Statistical Significance . 51
A.5 Dealing with repetitions . 52

Appendix B Methods in the State of art for Synteny Block detection 55

Appendix C Sorting permutation problem state of art 59
C.1 Sorting by reversals . 59
C.2 Sorting by transpositions . 60
C.3 Weighted operations and other evolutionary events 60
C.4 DCJ . 61

Appendix D Publications 63

Appendix E List of 68 Mycoplasmas 103

Appendix F Resumen en español 105

List of figures

3.1 Comparisons (A,B) and (B,C) show a conserved pair that is not detected in
comparison (A,C). 13

3.2 Three comparisons involving A,B and C sequences. (A,C) and (A,B) show
an inversion that is not present in (B,C). 14

3.3 Representation of Block Element. αh and α t represent the head and the tail
positions of the block in the full sequence. 15

3.4 Representation of the set of Unitary Block Elements AΦA in the sequence ΦA. 16
3.5 A graphic representation of Conserved Elements from HSPs. 17
3.6 Graphic representation of three Synteny Elements. Synteny Element π1 links

α1,β1 and γ1 Unitary Conserved Elements. 18
3.7 Representation of Break Point. α1, α2 and α3 are Unitary Conserved Elements. 18
3.8 Representation of the trimming process. A) Two overlapped HSPs. B) Result

of the trimming process. The two HSPs have been split into four pairs of
Conserved Elements. Two of them are still overlapped. C) New overlapped
Conserved Elements trigger a new trimming process. D) Final result of the
recursive trimming process. The final pairs of Conserved Elements do not
overlap. 21

3.9 Representation of the trimming process in a multiple comparison. In the
comparison AB there is an inversion, that triggers a trimming process in
the comparison BC. As a result, another trimming process is triggered in
comparison DC. 22

xiv List of figures

4.1 Average length, average percentage of identity, and coverage from all against
all comparison of 68 mycoplasmas. Grouped by closely, remote and poorly
related species. The X and Y axis represent coverage (as percentages) in the
sequences. Each point represents a comparison. The color represents the
average identity in the comparison. The shape represents the average length
of the detected blocks. On the top, results from our method, Gecko-CSB. On
the bottom, results from progressiveMauve. In the image it can be observed
that Gecko-CSB works better in terms of getting more coverage over the
sequences at the similar level of identity, especially in those comparisons of
poorly related species. 31

4.2 Frequency distribution of Breakpoint length. 32
4.3 CSBs before and after the refinement. A) Selection of the Region of Interest

(ROI), between two Computational Synteny Blocks (CSB). B) Representa-
tion of the virtual CSBs. C) Result after the refinement process. We also
detect BPs and extract PRASB and GAP sequences to analyse the accuracy
of the method. PRASB and BP have the same length. For more details of the
refinement process visit the second publication [5]. 33

4.4 Differences of SB detection for a certain region in the genomes using Gecko-
CSB and progressiveMauve methods. (a) Gecko-CSB detects one SB. (b)
progressiveMauve detects three SBs (B,C and D). The reasons of this differ-
ence are explained in the main text. 34

4.5 Differences of SB detection for a certain region in the genomes using Gecko-
CSB and progressiveMauve methods. (a) Gecko-CSB detects three SBs (A,B
and C). (b) progressiveMauve detects one large SB. 35

5.1 GenomeA and GenomeB are included in the public database. Genome C is
not in the database. If a certain metagenome read comes from Genome C
specie, it might match better in the Last Common Ancestor-ABC than in the
genomes A or B, because the genome C is not present in the database. . . . 39

5.2 The input is encoded as one-hot vector. After the LSTM layer, we use a fully
connected layer to combine all the LSTM cells outputs to produce a single
output. 40

Section 1

Introduction

New, massively parallel data acquisition technologies in many fields of science are producing
huge quantities of data that needs to be processed and analysed, in the context of all the
challenges that this situation entails. In many cases, current formal models are not valid
anymore or they are not robust enough to deal with the new challenges that the massive
available data and the type of the data bring out. The problem is not only the amount of data,
but also the diversity of such data (i.e. DNA, RNA or amino acid sequences) that needs to be
tackled with new methods and strategies adapted to get satisfactory results.

The field of sequence analysis has traditionally been working with short sequences such
as genes and proteins producing widely accepted and profusely used and stable models.
Nowadays, the availability of full genomes have risen the area of Comparative Genomics,
but the simple translation of methods from sequence to genome analysis seems not to be
valid for whole genome analysis. Besides base changes, short insertions and deletions in
genes, the full-genome analysis involves large rearrangements, where the statistical models
developed for proteins under assumptions of a general scoring system do not apply.

Algorithms and models designed for short sequences cannot be directly exported to deal
with long sequences like full genomes. Genomes are not only much longer than genes or
proteins, but are also more complex. New aspects to take into account emerge, such as
Synteny Blocks (SBs) or large-scale genome rearrangement (LSGR) events, which are only
observable working with whole or large parts of genomes. Therefore, these new challenges
are not just only at technical level but also at conceptual level, which implies a higher level
of complexity and understanding.

To illustrate that, let’s think the genome as a library where all the information that an
organism needs can be found. Over evolution, some shelves, books, chapters, paragraphs,
sentences, words or letters (units of information) have been lost, duplicated, merged, split or

2 Introduction

shifted (operations). As we can see, different levels of information and operations come into
play.

This thesis is a compendium of three articles recently published in high impact journals,
in which we show the process that led us to propose the definition of the Elementary Unit of
conservation (conserved regions in the genome that are detected after a multi comparison),
as well as some basic operations (inversion, transposition and duplication). The three articles
are transversely connected by the detection of SBs and rearrangement events (see background
in section 2), and strongly support the necessity of the framework which is described in
section 3. Indeed, the intellectual work carried out in this thesis and the conclusions provided
by these publications have been essential to fully understand that a proper definition of SB is
the keystone of the success in many Comparative Genomics methods.

The first publication proposes a framework to detect SBs and (LSGR) from a pairwise
point of view. In this framework, SBs are detected dealing with repetitions and small
fragments whilst other methods generally do not consider them for the sake of simplicity
(see section 2 for more details). We also propose a set of rules to identify LSGRs based on
some properties that SB must to fulfill.

Under the framework defined in the first publication, the refinement of the SB borders
using repetitions is addressed in a second work. Indeed, the method takes advantage of the
repetitions, since all of them together constitute a reliable source of information to determine
the exact point where the repetition area ends. This information was also useful to determine
SB boundaries and therefore Break Point (BP) regions.

The third publication addresses the metagenome analysis problem using the previous
findings. In more details, we proposed a method to estimate differences between genome
abundances given two metagenomes. To achieve that goal, reads contained in the metagenome
must be correctly assigned to a certain genome. Most probably, genomes in databases are not
exactly the same that the genomes contained in the sample from which reads are extracted.
Therefore, a perfect match read-genome is highly unlikely. Moreover, one read usually
matches in several genomes, what increases the complexity of choosing the true set of
genomes contained in a metagenome. However, after detecting SBs over the collection of
genomes, those reads that match in non-SB regions at specific genome regions (regions
that are not in other genomes) would be considered as true matches, a strong evidence of
the presence of such genome in the metagenome. For more details, see Genome-specific
experiments section in [76].

Currently, we are extending the framework from pairwise to multiple comparison. In
a multiple comparison scenario, SBs can be refined with much more precision because
the number of sub-sequences used for the alignment increases as the number of compared

1.1 Research objectives 3

genomes does. The BP detection also improves as a consequence of a better SBs refinement
process, but also because under a multiple comparison environment it is possible to detect
more BPs than in a pairwise comparison (for more details, see section 3). Additionally, the
new framework allows the reconstruction to the last common ancestor.

1.1 Research objectives

This thesis is aimed to propose solutions for the following problems:

• Definition and detection of SBs

• Detection and identification of large scale genome rearrangements

• Detection of Break Points

• Refinement of the SBs borders

• Application of the SB detection for metagenome analysis.

1.2 Results

The global results achieved in this thesis can be summarised as the design and implementation
of a pairwise framework that:

• SBs detected after the comparison and the refinement process have more coverage and
enhance the quality than state-of-the-art methods.

• It is designed for dealing with overlapped HSPs, one of the main drawbacks in current
software tools.

• It is able to detect and organise repetitions. For instance, interspersed repeats or tandem
repeats.

• It is able to work in much complex environments than state-of-the-art methods (i.e.
overlapped fragments, small fragments, highly repetitive fragments)

• It is able to work with HSPs collections provided by other programs. It is not necessary
to apply any previous filtering process to simplify the input of these problematic
fragments.

4 Introduction

• It is non-parametric in the sense that it does not need parameters to detect SBs or
repetitions. In our case, all parameters are internally estimated based on distributions.
We also use some formulas to suggest parameter values to be used in the process.

• It is demonstrated to be a robust method able to deal with genomes related at different
levels of similarity.

• It produces a more accurate refinement using repetitions flanking the SBs.

• It enables a more precise identification of genomes in metagenome samples using SBs
and BPs.

A prototype for multiple comparison framework is also proposed in this thesis. This
framework enables a better detection and refinement of SBs and BPs. We also propose a set
of rules to identify genome rearrangements and operations to perform the reconstruction of
the rearrangements history in order to estimate the last common ancestor.

1.3 Contribution of this thesis

The main contribution of this thesis is the proposal of a novel framework to handle properly
large scale rearrangement events in a multiple genome comparison, combining homology
search methods, sequence alignment and sorting permutation methods. This framework
includes a refined definition of the SB concept (what we have defined as Unitary Synteny
Block Element), and algorithms to detect them and identify SBs rearrangements. In addition,
a definition of Break Point is provided.

The results of this work reinforced the idea of trimming fragments to properly identify
repetitions and building SBs afterwards in terms of certain previously defined properties.
The idea of using repetitions to refine SBs brought us to think that this strategy could be also
applied in multiple comparison scenarios.

The sum of the work brings us to the following conclusions:

1. The SB concept has a dual nature: the block content (the sub-sequence) and the relation
with other blocks (the synteny) from different genomes.

2. Both parts (the block and the synteny) are equally necessary for the rearrangement
reconstruction.

3. The SB concept should be redefined in a N-dimensional space rather than pairwise
(2-dimensional space) because 1 and 2.

1.4 Outline of the Thesis 5

1.4 Outline of the Thesis

This thesis is structured as follows:

• Section 1 provides a high-level description of the work carried out in this thesis.

• Section 2 provides the needed background to understand the following sections and
reviews state-of-the-art methods.

• Section 3 describes the proposal of the new framework with the SB definition and
algorithms in a multiple comparison environment.

• Section 4 describes the global results of this thesis in more detail.

• Section 5 lists the conclusions derived from this work and sets future work lines.

This thesis also contains four Appendixes, which go in depth in some topics that might be
interesting for the reader:

• Appendix A contains a brief introduction to sequence alignment methods.

• Appendix B provides a summary about methods to detect SBs.

• Appendix C reviews sorting permutations problems.

• Appendix D contains a copy of the three publications.

• Appendix E contains the list of the 68 Mycoplasmas used in the experiments.

• Appendix F contains a summary in Spanish

Section 2

Background

This section coarsely describes the problematic regarding SBs detection and rearrangement
reconstruction (in sections 2.1 and 2.2 respectively) that motivated the submitted publications
in appendix D. In order to keep the section fluid and linear for the reader, some specific
sections that might be familiar to the reader have been included as separate Appendixes at
the end of the thesis.

• Appendix A contains a brief description about Sequence Comparison methods, statisti-
cal significance and methods to deal with sequence repetitions.

• Appendix B reviews the main methods in the state-of-the-art for SB detection.

• Appendix C provides a review in sorting permutation problems.

2.1 Synteny Blocks and Break Points

The possibility to work with full genome sequences made possible an abstraction jump from
nucleotides level of information to higher units of information like genes, blocks of genes or
chromosomes.

As it is commented in Appendix A, comparative methods had to implement strategies
to reduce the space search due to the increase in sequence length. One of these solutions is
based on finding K-mers present in the sequences under comparison, as perfect matches for
a given length (K)[74], or allowing some mismatches [3]. Using such matching K-mers as
seed points, the HSPs are extended. Increasing the value of k, and relaxing the parameters
that control the HSP extension – e.g. decreasing the similarity threshold - we will observe
that it is possible to detect more HSPs. In addition, some of these conserved regions could

8 Background

be grouped under the form of blocks. This evidence is more obvious when we represent
graphically the results of HSPs calculation changing the similarity threshold.

Another important issue is the presence of sequence repetitions, which increases the
complexity of methods to detect such blocks. For more details, see Appendix A section
4. These blocks that we are referring to are known as SBs. The SBs concept allows us to
describe Large Scale Genome Rearrangements (LSGR) between sequences, and therefore
design methods to detect them. There is still not an accepted formal definition of SB. Some
authors base the definition on genes, whilst others define it based on homologous markers.

Nadeau and Taylor [68] first introduced the notion of conserved segment. In their work,
they stated that conserved segments are regions where genes content is the same and gene
order is conserved. However, many other definitions can be found in the literature:

• “A set of equal to or larger than a minimum number of gene pairs” [73],

• “Segments of chromosomes containing orthologous markers in the same or reverse
order in the two genomes” [25],

• “Conserved blocks of genes on chromosomes of related species” [97],

• “Conserved regions corresponded to pairs of segments, one in each genome, that are
orthologous and have not been rearranged in either lineage” [57],

• “A maximal sequence of genes on a chromosome of genome A, occurring unchanged
in genome B” (assuming that genomes A and B have the same gene content) [96],

• “Segments that can be converted into conserved segments by micro rearrangements.
The Synteny Blocks do not necessarily represent areas of continuous similarity between
two genomes. Instead, they usually consist of short regions of similarity that may be
interrupted by dissimilar regions and gaps” [77].

This lack of a formal definition is a clear influencing factor of the different results produced
by available software, and questions the robustness of one of the basic units of information
in Comparative Genomics, as it was stated in Ghiurcuta’s work [39]. In addition, without a
formal definition, comparison between methods is extremely difficult to carry out.

2.2 The granularity problem in Synteny Block detection

The granularity problem appears when the detection of SBs depends somehow on a block-
length or similarity threshold. There is a compromise between calculating small well-
conserved blocks, and large blocks by relaxing the percentage of identity.

2.3 The Break Point definition 9

The first approach is useful to analyse particular regions in the genome and to detect
small evolutionary events such as insertions, deletions and mutations, whereas the second
approach is useful to get the whole picture of big evolutionary events in a comparison (i.e
transpositions, inversions or translocations). Ghiurcuta et al. mentioned this paradox as the
granularity attribute of SBs [39].

This problem evidences the different levels of information that SBs definition has been
trying to cover with unsatisfactory results. As consequence, most methods include user
parameters to solve the granularity problem (see Appendix A.3 for more details).

2.3 The Break Point definition

A SB is defined as a relation between two conserved regions in the sequence of two different
species, in terms of homology or similarity. A BP is usually known as the region in between
two SBs that have suffered a rearrangement due to a LSGR [57, 29, 18].

Many studies support that rearrangements do not happen randomly but follow an unknown
model [82, 63, 70]. Some regions of the sequence seem to be more fragile [17] or predispose
to suffer a LSGR (hotspots) [11, 2]. Indeed, these BPs can be reused [77, 80] and their reuse
rate is strongly linked with the resolution in which SBs are detected [7]. Therefore, if a BP
seems to depend on the “fragility” of the specific regions in the sequence, then it should not
be defined as a relation between two specific regions of two sequences (as a SB is defined),
although so far a comparison method is needed to detect them.

Current methods based on sequence comparison, detect SBs by joining or chaining High
Score Segment Pairs, and when they refine their borders, they try to expand the SB borders by
maximizing a target score function. This would mean that the BP region is a region without
similarity. However, following the previous reasoning about BP definition, it implies that BPs
regions do not have to be necessarily regions with almost no similarity. Two species could
share the same BP and therefore, the sequences would have some level of similarity. We
think that when refining SBs, they can be trimmed as well as expanded after the refinement
process.

This reasoning would be a contradiction if we base the SB definition over a pairwise
comparison scope, and BP as the region in between two SBs. For example, a BP might be
between two SBs in one pairwise comparison i.e A,B and included within a SB in other
comparison A,C, which would lead us to an incoherence. As soon as we incorporate a
multiple comparison environment in the definition of SB, this inconsistency disappears (see
section 3).

10 Background

2.4 Sorting Permutation Problem

Sorting permutations problems face the challenge to transform one sequence into another
by permutations [1]. Usually, these methods have been proofed to be NP-hard [21]. The
reconstruction of the history of rearrangements can be viewed as a sorting permutation
problem where one sequence is transformed into another by certain operations. Methods
to sort permutations have been widely applied to sort genome rearrangements in a genome
comparison context [60]. For a deep review, A. Christie wrote in 1998 a convenient thesis
about genome rearrangement problems, in which methods to date were analyzed [1]. A more
recent review was written by Li et al. [60].

Generally, these methods aim to calculate a sequence distance based on the parsimony
criterion: find the minimum number of operations to transform one sequence into another.
However, in this section we will focus on the algorithmic part of these methods, leaving the
sequence-distance problem.

Most methods assume that the sequences to sort are a list of integers, in which each
number represents regions between sequences. These regions can represent homologous
genes, homologous markers, HSPs, etc. In some cases, existing methods allow signed
numbers to include the representation of synteny regions that have been found in the reverse
complementary sequence.

The set of available operations, or better said, defined in the model description, also
varies from one method to another. In a chronological overview, early approaches only
considered one type of operation (either reversals or transpositions) [56, 10]. In dribs and
drabs, they started to design methods using different operations (such as block interchange)
or combining them [87].

The limitations in the model from the features’ input point of view have also changed
over time. First methods were designed to work only with linear genomes, without signed
elements. Allowing signed permutations was one of the first model limitations solved. Later
on, new methods were developed taking into account different topographies, such as circular
genomes or chromosomes, which involve more than one sequence and new operations and
were improving the state of art in this field of study (see Appendix C).

However, most methods – even the latest ones – keep trying to sort permutations in a
pairwise way. They assume that one is the reference and all the permutations take place over
one sequence. From a logical point of view this does not make sense. Firstly, because in the
genome evolution process, both species suffer rearrangements in parallel. Secondly, because
even in the case that there is only one rearrangement to revert, there is no way to know –

2.4 Sorting Permutation Problem 11

from a pairwise comparison – in which specie the rearrangement has happened. Therefore, a
multiple comparison is needed to support the hypothesis.

Cross-sectional at all methods is the fact that they do not use any inside-block information
from the permutations they try to sort. Traditionally, the sorting permutation problem in
a Comparative Genomics context has been faced as a “pure” sorting permutation problem.
That is to say, methods to solve this problem are easy to adapt to solve the same problem in
other context since there is no specific information at sequence level (i.e. similarity between
blocks, or length) included in the model description. Although this approach yielded to solve
many theoretical problems in the combinatorial analysis, their solutions come into conflict
with other approaches based on inside-block information, like multiple sequence alignment.1

In section 3, we describe the definition of SB in which our framework is based on. We
argue that SBs notion has two concepts closely linked: block and synteny. Although it
might seem a useless tautology, SB definitions in other methods ignore the dual nature of the
concept. As a consequence, methods to solve sorting permutation problems in a comparative
genomics context just look at one part of the synteny side of the SB, obviating the block
features. In a roughly simplification, they sort the “synteny” permutations forgetting the
block content.

On the other hand, most accepted methods to calculate inter-genome distance are based on
block content information [58], by aligning sequences or extracting features (alignment-free
methods [46, 20]) overlooking any information extracted from rearrangement reconstruction.
In this case, they look just at the block side (the sequence content) forgetting one part of the
synteny dimension.

Rearrangements reconstruction (or sorting permutations) in comparative genomics is
extremely connected with relation at the sequence level. Indeed, both approaches share
the same goal – explaining the evolution by phylogeny – and therefore, both should be
complementary and coherent (see foot note).

Our proposal for sorting the permutation problem is based on the SB definition provided
in section 3. It combines block content with synteny relation to perform a coherent operation
in the reconstruction process: Synteny relation determines where there is a rearrangement to
be sorted; and Block content determines which block (or blocks) must be permuted.

1When there is a high rate of rearrangements, and these rearrangements are defined in the model, both
methods tend to converge [93].

12 Background

2.5 Some remarks regarding current Sorting Permutations
methods approaches

Methods that only take into account reversals or transpositions cannot be applied in real
comparison problems where we can find both. Most methods, which combine them, do not
take into account other kind of rearrangements, for instance, duplications.

Most methods sort permutations taking one genome as a reference and the other one as
the “unsorted”. Then, making operations, they transform one genome into the reference.
This approach would assume that one sequence evolved from the reference. Evolutionary
events are relationships between two species, but we cannot assume that all this evolutionary
events have happened exclusively in one species.

Generally, these methods are based on the order that common genes appear in two
species. They were not designed for working with SBs from sequences. Sorting permutations
problems do not take into account any information extracted from sequences, for example,
similarity between SBs. Most of them are leaded by minimizing the sum of weight of
operations, which in most cases, are poorly justified [60].

The new framework that we propose enables to reorder these permutations in both
sequences, based on breakpoints and similarity between blocks. At every step it is made,
one sequence is transformed into the intermediate sequence. At the end of the process, both
original sequences are transformed into a different sequence, which would be close to the
“last common ancestor” one.

Section 3

Systems and Methods

3.1 Introduction

As described in section 2, there is still no formal accepted definition about Synteny Block
(SB). SB concept refers to conserved block that maintain the same order, and it only has
a meaning in a comparison environment. As a relation, SBs depend on the sequences, for
instance: single nucleotides, genes or other kind of unit of information to be compared
within the sequence. Methods to detect SBs are generally based on similarity between
regions, controlled by user-defined parameters, where length and statistical significance play
an important role. Due to these constrains, SBs identified in sequence A might be different
depending on the other sequence we are comparing with. This is to say, SBs detected through
comparison of (A,B) and (A,C) may be dissimilar.

For instance, in a multiple comparison, less conserved pairs might not be detected due to
similarity constraints as illustrated in Figure 3.1. These pairs, which have not been detected
by conventional methods, could be inferred from (B,C) and (A,B) comparisons to (A,C).
The method to infer less conserved pairs (similar to calculate intermediate sequences [4]) is
described in section 3.4.

Fig. 3.1 Comparisons (A,B) and (B,C) show a conserved pair that is not detected in compar-
ison (A,C).

14 Systems and Methods

Furthermore, when rearrangements happen (or Large Scale Genome Rearrangements
(LSGR)), genomes also change the number of conserved pairs that comparison methods are
able to detect. Figure 3.2 shows three comparisons involving A,B and C sequences. Let’s
assume that between C and B there are no rearrangements, and on the contrary there is an
inversion between (A,C) and (A,B). Therefore, comparison methods would detect three
different conserved pairs in the comparisons (A,C) and (A,B) and only one in (B,C). This
also would lead us to the BP contradiction explained in section 2.3.

Fig. 3.2 Three comparisons involving A,B and C sequences. (A,C) and (A,B) show an
inversion that is not present in (B,C).

Hence, SB definition must be built from the multiple comparisons perspective, rather
than pairwise comparison.

As it has been described in section 2, there are many aspects to take into account when
facing the SB detection, like repetitions between and within sequences or the granularity
problem. The proposed definition of SB not only models repetitions between sequences,
but it also includes repetitions within the sequence. Regarding the granularity problem, our
strategy relies in the rearrangements history reconstruction, instead of hyper parameter to
fine-tuning the SB size. Nevertheless, hyper parameter can play an important role when
computational resources are limited. As we reviewed in section 2, rearrangement history
reconstruction has been addressed from the sorting permutation point of view, mostly in
pairwise comparison. In our approach, a solid definition of SB lets us design operations
that will progressively increase the length of SBs while at the same time rearrangements are
detected. Thus, SB could be the unit to detect rearrangements at invariant scale, which in
turn solve the granularity problem.

3.2 Synteny Block definition

There are two categories strongly related to each other in the SB concept, that cannot be
explained one without the other. The first one is concerning the sequence: there are certain
regions in one sequence that appear in other sequences. This category concerns to the Block

3.2 Synteny Block definition 15

essence. The second one is the relation among these regions: what kind of rearrangement they
have suffered and what degree of conservation they share. This second category concerns to
the synteny relation.

However, in SB definitions, these categories are not yet separated. One of its conse-
quences is that methods to detect SBs produce widely different results and it is therefore
extremely difficult to compare them (see section 2.1 for more details). Another consequence
is that methods to trace back rearrangements generally do not use any inside-block infor-
mation (see section 2.2). And finally, methods to estimate distances between sequences
either align sequences or use some metrics related to the rearrangement reconstruction, but
generally they do not combine them.

In this subsection, these two categories that have appeared together in all existing defini-
tions are differentiated in order to build up a simple yet solid definition of Synteny Block. This
definition uses the concepts of Block Element, Unitary Block Element, Unitary Conserved
Element, Unitary Synteny Element and Break Point.

Definition 1. Block Element
A Block Element is an arbitrary subsequence in the sequence, formally defined as:

• α = (αh,α t)

• where αh,α t ∈ N and represent the head and the tail absolute positions of the block in
the full sequence (see figure 3.3).

And it has the following properties:

1. αh < α t

2. |α|= α t −αh

3. |α| ≥ 0 (As a consequence of 1 and 2)

Fig. 3.3 Representation of Block Element. αh and α t represent the head and the tail positions
of the block in the full sequence.

16 Systems and Methods

Definition 2. Unitary Block Element
Let Φ = {φA,φB,φΓ, ...,φNΦ

} be a set of NΦ sequences. Let AΦA = {α1,α2,α3, ...,αNA}
be a set of NA Block Elements in the sequence φA. Then, the set AΦA is a ordered set of
Unitary Block Elements if the following property is fulfilled:

Fig. 3.4 Representation of the set of Unitary Block Elements AΦA in the sequence ΦA.

∀αi,αi+1 ∈ AΦA : α
h
i < α

t
i < α

h
i+1 (3.1)

In other words, a Unitary Block Element is a Block Element that does not overlap with
others Unitary Block Elements (see figure 3.4).

Definition 3. Unitary Conserved Element
A Unitary Conserved Element is a Unitary Block Element originate from comparison1

like High-Score Segment Pairs, homology pairs, homologous genes...

What makes this part of the definition different to other SB definitions is the constraint
imposed by the Unitary Block Element. Therefore, the key-point of this definition is how
to transform the blocks coming from comparison methods in a way that fulfill the property
3.1. Section 3.3 addresses the problem of the transformation from HSPs to the set of Unitary
Conserved Elements.

The second part of the SB definition regards the relation of the Unitary Conserved
Elements among them: the synteny part. The synteny plays as the link between two regions
detected as similar regions. For example, conserved block elements α and β are detected by
a comparison method (α is similar to β). The way we define to be similar depends on the
comparison method. However, we will say that α and β has the same synteny (π).

Definition 4. Unitary Synteny Element
A Unitary Synteny Element is a set of Unitary Conserved Elements from different se-

quences that share the same synteny (π), and fulfill the following properties:

• More than one Unitary Block Element can be present in the same sequence.

π = {α,α ′,α ′′, ...,β ,β ′,β ′′, ...,γ,γ ′,γ ′′, ...,ω ′′} (3.2)
1See figure 3.5

3.2 Synteny Block definition 17

Fig. 3.5 A graphic representation of Conserved Elements from HSPs.

• Unitary Block Elements in the Unitary Synteny Elements have the same module

|α|= |α ′|= |α ′′|= ...= |β |= |β ′|= |β ′′|= ...= |γ|= |γ ′|= |γ ′′|= ...= |ω ′′| (3.3)

• The relation between Unitary Conserved Elements and Unitary Synteny Elements is
bijective. Let Π = {π1,π2, ...,πNΠ

} be a set of NΠ Unitary Synteny Elements. Then,

∀πi,π j ∈ Π, j ̸= i : πi ∩π j = /0 (3.4)

and
π1 ∪π2 ∪π3 ∪ ...∪πNΠ

= AΦA ∪BΦB ∪ΓΦΓ
∪ ...∪ΩΦΩ

(3.5)

This is to say, every Unitary Conserved Element belongs to one and only one Unitary
Synteny Element. See figure 3.6.

Π(α) = π (3.6)

The Unitary Synteny Elements are the smallest unit from which SBs are detected.
Through rearrangement operations, two or more SBs can be concatenated into a single
one, increasing its size and detecting SBs and rearrangements at different scales. Section 3.5
defines the set of scale invariant operations to build SBs.

18 Systems and Methods

Fig. 3.6 Graphic representation of three Synteny Elements. Synteny Element π1 links α1,β1
and γ1 Unitary Conserved Elements.

Notice that this definition ensures that Unitary Synteny Elements are free of internal
rearrangements because of the property 3.1 in Unitary Conserved Elements. Furthermore,
notice that under this definition of SB, there is no reference genome.

Finally, in a multiple genome comparison, Unitary Synteny Elements can represent
different levels of synteny: a Unitary Synteny Element can hold Unitary Block Elements
from different genomes. We name Synteny Level (SL(π)) as the number of different genomes
involved in the Unitary Block Elements linked by the Unitary Synteny Element.

Definition 5. Break Point
Let αi and αi+1 be two adjacent Unitary Conserved Elements that belong to the set AΦA .

Then, a Break Point (BPαi,αi+1) is defined as the region between α
f+1

i and α
o−1
i+1 (see figure

3.7). If α
f+1

i = αo
i+1, then the Break Point is consider as a point.

Fig. 3.7 Representation of Break Point. α1, α2 and α3 are Unitary Conserved Elements.

Notice that under this definition, a BP is defined in the sequence, and not as a relation
between sequences, although a comparison method is still needed to detect it. This implies
that BPs in the sequence ΦA and BPs in the sequence ΦB originated by Unitary Conserved
Elements that share the same synteny, might share high similarity, avoiding the contradiction
described in section 2.

3.3 The Unitary Conserved Element problem 19

3.3 The Unitary Conserved Element problem

The Unitary Block Elements can be calculated from any pair of markers in the sequence
detected by a proper comparison method. To illustrate the method to transform conserved
pairs into Unitary Conserved Elements, we will assume that those pairs are calculated using
a method whose output are ungapped High-Score Segment Pairs (HSPs). The set of all
HSPs from all versus all pairwise sequence comparison does not fulfill the properties we
have defined before in section 3.1. In order to provide a formal description of the method, a
definition of HSPs under our framework is needed. Afterwards, we will describe the problem
and we will propose a method to transform HSPs to a set of Unitary Conserved Elements.

Definition 6. High-Score Segment Pair
A High-Score Segment Pair (HSP) is a vector in N2 that represents a similarity between

two subsequences from two sequences, not necessarily different. Formally, and using the
previous notation, we can define a HSP (H) from sequences ΦA and ΦB as:

H = (αh,β h,α t ,β t ,sim(H),sign(H))

Where αh,β h,α t ,β t represent the coordinates in the sequences, sim(H) measures the
similarity between these subsequences and sign(H) indicates whether the relation is found
in the forward sequence (positive sign) or in the reverse complement (negative sign).

We can split the HSP in two one-dimension vectors according the sequence in which they
are extracted. They would represent Block Elements in the sequence ΦA and ΦB.

H = (HA,HB)

HA = α = (αh,α t)

HB = β = (β h,β t)

Since HSPs are ungapped, the magnitude for both Block Elements are the same:

|H |= |HA|= |HB|= (α t −αh) = (β t −β h)

As a consequence, the value of the direction is always the same. However, as we already
commented, the sign can be positive or negative.

sign(H) =

{
+1 if f orward
−1 if reverse complement

(3.7)

20 Systems and Methods

The set of HSPs (conserved Block Elements) originate from (A,B) comparison must be
transform into Unitary Conserved Elements. After this transformation, property 3.1 must
be fulfilled. This means that Block Elements in the sequence cannot overlap. Formally, we
define the concept of overlapping as follows:

Definition 7. Overlap
Let H1 = (αh

1 ,β
h
1 ,α

t
1,β

t
1) and H2 = (αh

2 ,β
h
2 ,α

t
2,β

t
2) be two HSPs. Then, H1 and H2

overlap if:

max(αh
1 ,α

h
2)< min(α t

1,α
t
2) (3.8)

and / or
max(β h

1 ,β
h
2)< min(β t

1,β
t
2) (3.9)

In the particular case in which αh
1 = αh

2 and α t
1 = α t

2 (or β h
1 = β h

2 and β t
1 = β t

2) there is
no need to split the Block Element since α1 and α2 (or β1 and β2) would be the same Block
Element. In that case we will say that α1 and α2 (or β1 and β2) fully overlap, in one or both
sequences.

If any of these conditions are true, (and they are not the same Block Element), then H1

and H2 shall be split. In order to avoid losing information, we will split them in four HSPs
as illustrated in Figure 3.8 B. According to property 1 of Unitary Synteny Element, we will
split the HSPs following the equations:

H1 = (αh
1 ,β

h
1 ,∆1,β

h
2)

H2 = (∆1,β
h
2 ,α

t
1,β

t
1)

H3 = (αh
2 ,β

h
2 ,∆2,β

t
1)

H4 = (∆2,β
t
1,α

t
2,β

t
2)

where

∆1 = αh
1 +β t

1 −β h
1

∆2 = αh
2 +β t

2 −β h
2

At this point is worth to point out that under this framework, all HSPs are pairs of Conserved
Blocks (PCBs) but not all PCBs are HSPs. When we split one HSP, as a result we obtain two
pairs of Conserved Blocks that are not longer HSPs.

Notice that every new PCB might trigger a new overlapping conflict that is solved in a
recursive way (see Figure 3.8 C and D).

3.3 The Unitary Conserved Element problem 21

Fig. 3.8 Representation of the trimming process. A) Two overlapped HSPs. B) Result of the
trimming process. The two HSPs have been split into four pairs of Conserved Elements. Two
of them are still overlapped. C) New overlapped Conserved Elements trigger a new trimming
process. D) Final result of the recursive trimming process. The final pairs of Conserved
Elements do not overlap.

However, this pairwise overlapping conflict is just the beginning of the transformation
problem. It is just solving the conflict for one plane. In a multiple comparison, we must
ensure that the overlapping conflict is solved for all the planes:

Let HAB = {H1,H2, ...,HNAB}be the set of NAB PCBs from the comparison of sequences
ΦA and ΦB. Then, HΦ = {HAB,HAΓ,HA∆, . . . ,HBΓ,HB∆, ...,HΨΩ} is the set of all PCBs from
the multiple comparison of sequences contained in Φ and HA = {HAB,HAΓ,HA∆, ...,HAΩ}
the set of all the PCBs that share the dimension A meaning that every PCB in this set can
overlap in the A dimension. Therefore, if one PCB in the AB plane is overlapping, after the
split process the new PCBs must not overlap in the HA and HB set. This triggers a recursive
operation since modifications of HSPs in HA∆ leads to modifications in the set H∆, which in
turn might causes modifications in other sets. Figure 3.9 illustrates the problem.

As we said before, Unitary Synteny Elements represent the relation among Unitary
Block Elements in a multi-dimension space. Therefore, it also includes the signed pairwise
relation. Every pair of Unitary Conserved Element within the same Unitary Synteny Element
conforms a vector, and its sign represents the strand.

After the process, the sets of Unitary Conserved Elements holds the property 3.1 and
therefore constitute sets of Unitary Conserved Elements, linked by the set of Unitary Synteny
Elements. The process does not change the sequences or the relation between them. It just
transforms the set of all HSPs into a set of Unitary Conserved Elements and Unitary Synteny
Elements.

22 Systems and Methods

Fig. 3.9 Representation of the trimming process in a multiple comparison. In the comparison
AB there is an inversion, that triggers a trimming process in the comparison BC. As a result,
another trimming process is triggered in comparison DC.

3.4 Transitivity property of Synteny Blocks: Inferring less
conserved HSPs

As it was commented previously in the introduction of this section, in a multiple comparison
scenario, HSPs in a sequence can be different depending on the other sequence it is compared
with. Thanks to the multi-dimensional SB definition, it is possible to infer by transitivity.
HSPs that have not been able to be detected using traditional methods, generally due to such
regions in the sequences under comparison, might have not reached certain user-defined
thresholds.

3.4 Transitivity property of Synteny Blocks: Inferring less conserved HSPs 23

Methods to detect HSPs (or homology markers, homologous genes, etc) between se-
quences are based, to some extent, on similarity between regions. Other methods like
PSI-Blast [4] goes further and calculate a profile of conserved regions, in order to find less
conserved regions in other sequences. However, a recursive search over the database is
needed.

The method we describe in this subsection infers HSPs between sequences without an
explicit comparison between the subsequences that the inferred HSP represent. Hence, this
method is not similarity-dependent, what opens the possibility to detect less conserved HSPs
that might have not reached the similarity or statistical significance thresholds. It is just a
necessary consequence of the SB definition in a N-dimensional space.

In this subsection we provide the inferred HSP definition as well as an algorithm to infer
them.

Definition 8. Inferred HSP
A Inferred HSP is a pair of Conserved Blocks that is obtained from a Unitary Synteny

Element. Let HAB, HAC be and HBC the set of all HSPs detected in the pairwise comparison
of (A,B), (A,C) and (C,B). Let π = {α,β ,γ} be a Unitary Synteny Element obtained by two
arbitrary HSPs, HAB = (αh,β h,α t ,β t) ∈ HAB and HAC = (αh,γh,α t ,γ t) ∈ HAC. Then, a
necessary HSP is inferred by HBC = (β h,γh,β t ,γ t).

If HBC (the inferred HSP) is not in the set of detected HSPs HBC is due to parameter
configuration in the method to calculate HSPs in the comparison, because conceptually it
should appear. Notice that this method also allows inferring HSPs within the same sequence.

This method does not increase the number of Unitary Conserved Blocks, it just reveals
synteny relations that have not been detected by the chosen comparison method. Hence, this
supports the evidence why SBs must be defined in a N-dimensional space.

Sign of the inferred HSP

The HSP sign is allocated depending on which sequence we have used for the comparison
(forward or reverse complement). Since the inferred HSP has not been detected explicitly by
sequence comparison, the sign of the new HSP is unknown and must be inferred as well.

It is interesting to see how for the sign of the HSP, the sign rule applied to scalar
multiplication in maths works. This is to say, if both HSPs have a forward relation (positive)
or reverse (negative), then the related fragment will have a positive relation (both sequences
to detect the HSP are the same strand). Otherwise, the sign will be negative because for one
sequence it is necessary the reverse complementary whilst for the other it is the forward.

24 Systems and Methods

3.5 Rearrangements detection and reconstruction via Uni-
tary Synteny Block

Through reconstruction operations, SBs increase the length by the concatenation of Unitary
Conserved Elements. At the same time, new rearrangements can be detected as a consequence
of these operations aimed to reconstruct the rearrangement history.

3.5.1 Synteny Block concatenation

After a rearrangement operation, a new SB is detected as a consequence.
Let {αa−1,αa,αa+1} be three Conserved Blocks that belong to AΦA ; and {βb−1,βb,βb+1}∈

BΦB , {γg−1,γg,γg+1} ∈ ΓΦΓ
and so on.

• if the succession of Unitary Synteny Elements for adjacent Unitary Conserved Elements
at each sequence is the same

Π(αa+i) = Π(βb+i) = Π(γg+i) = ...= Π(ωo+i) = πi : i = {−1,0,+1} (3.10)

• all these Unitary Conserved Elements conform each a Unitary Synteny Element:

π−1 = αa−1 ∪βb−1 ∪γg−1 ∪... ∪ωo−1

π = αa ∪βb ∪γg ∪... ∪ωo

π+1 = αa+1 ∪βb+1 ∪γg+1 ∪... ∪ωo+1

(3.11)

• Synteny Elements have the same Synteny Level:

SL(π−1) = SL(π) = SL(π+1)

• and the sign relation between them is the same along adjacent Elementary Conserved
Blocks

sign(αa−1,βb−1) = sign(αa,βb) = sign(αa+1,βb+1)

sign(αa−1,γg−1) = sign(αa,γg) = sign(αa+1,γg+1)

sign(βb−1,γg−1) = sign(βb,γg) = sign(βb+1,γg+1)

...

sign(ψp−1,ωo−1) = sign(ψp,ωo) = sign(ψp+1,ωo+1)

(3.12)

3.5 Rearrangements detection and reconstruction via Unitary Synteny Block 25

Then, Unitary Synteny Elements π−1,π and π+1 can be merged into a single one by
concatenating their Unitary Conserved Elements as follows:

πnew = {αnew,βnew, ...,ωnew}
where

αnew = (αh
−1,α

t
+1)

βnew = (β h
−1,β

t
+1)

...

ωnew = (ωh
−1,ω

t
+1)

(3.13)

3.5.2 Insertions and deletions

When concatenating SBs, it might happen that BPs between Unitary Conserved Blocks have
not the same length. In this case, a DNA insertion (or deletion) can be detected. A multiple
alignment of Unitary Conserved Elements and BPs might help to set the boundaries of the
insertion(s).

However, this is not the only way to detect insertions or deletions. If two or more
sequences share the same insertion, with a certain level of conservation enough to be detected
by a comparison method, then an insertion can be detected as follows:

• if

Π(αa−1) = Π(βb−1) = Π(γg−1) = ...= Π(ωo−1) = π−1

Π(αa) = Π(βb) = Π(γg) = ...= Π(ωo) = π

Π(βb+1) = Π(γg+1) = πin

Π(αa+1) = Π(βb+2) = Π(γg+2) = ...= Π(ωo+1) = π+1

(3.14)

• and equation 3.11 is fulfilled,

• then, Π(βb+1),Π(γg+1) are detected as insertions.

After detecting an insertion, Elementary Synteny Units {π−1,π,π+1} can be merged
following the process described above in section 3.5.1.

3.5.3 Duplications

Duplications are one of the most important rearrangement events in evolution. A duplication
is detected within the same Synteny Unit, when we find more than one Conserved Block that
belongs to the same sequence. Therefore:

26 Systems and Methods

• if
π = {α1,β2,γ3, ...,α4} (3.15)

• then, either α1 or α4 is a duplication.

Thanks to the multiple comparison environment, we can detect which Conserved Block was
duplicated by the following rule:

• if

Π(αa−1) = Π(βb−1) = Π(γg−1) = ...= Π(ωo−1) = π−1 ̸= Π(α ′
d−1)

Π(αa) = Π(βb) = Π(γg) = ...= Π(ωo) = π = Π(α ′
d)

Π(αa+1) = Π(βb+1) = Π(γg+1) = ...= Π(ωo+1) = π+1 ̸= Π(α ′
d+1)

(3.16)

• then, α ′
d is a duplication.

3.5.4 Inversions

Inversions are easy to detect in a pairwise comparison by just looking at the strand in which
the fragment (or de HSP) was detected. However, from a pairwise point of view is not
possible to detect in which sequence the event was produced. In a multiple comparison
environment, it is possible to detect which sequence was reverted, and therefore, revert the
event and restore the former SBs.

A inversion can be detected as follows:

• if

Π(αa−1) = Π(βb−1) = Π(γg−1) = ...= Π(ωo−1) = π−1

Π(αa) = Π(βb) = Π(γg) = ...= Π(ωo) = π

Π(αa+1) = Π(βb+1) = Π(γg+1) = ...= Π(ωo+1) = π+1

(3.17)

• and Synteny Elements π−1, π and π+1 have the same Synteny Level

• and
sign(αa−1,βb−1) = sign(αa+1,βb+1) =−−−sign(αa,βb)

sign(αa−1,γg−1) = sign(αa+1,γg+1) =−−−sign(αa,γg)

...

sign(βb−1,γg−1) = sign(βb+1,γg+1) = sign(βb,γg)

...

sign(ψp−1,ωo−1) = sign(ψp+1,ωo+1) = sign(ψp,ωo)

(3.18)

3.5 Rearrangements detection and reconstruction via Unitary Synteny Block 27

• then, αa can be considered as a candidate for reversion.

3.5.5 Transpositions

A transposition is an operation that cuts one block in the genome and moves into another
place in the genome. In our framework a transposition is detected as follows:

• if

Π(αa−1) = Π(βb−1) = Π(γg−1) = ...= Π(ωo−1) = π−1

Π(αa) = Π(βb+1) = Π(γg+1) = ...= Π(ωo+1) = π+1
(3.19)

• and

Π(αi−1) = Π(β j−1) = Π(γk−1) = ...= Π(ωl−1) = πm−1

Π(αi) = Π(βb) = Π(γg) = ...= Π(ωo) = π

Π(αi+1) = Π(β j+1) = Π(γk+1) = ...= Π(ωl+1) = πm+1

(3.20)

• and Synteny Elements π−1, π and π+1 have the same Synteny Level

• then, αi is a transposition.

Section 4

Results and discussion

This section summarises the results of the three publications presented in this thesis. Our
results are compared with progressiveMauve [30] , GRIM-Synteny [87] and CASSIS [13].
Since our method works with pure sequence data, we discarded all methods based on gene
annotation, protein information, or methods that are able to identify SBs only in coding
regions.

The dataset that have been used for the experiments is a collection of 68 Mycoplasma
genomes. This dataset contains genomes with different level of similarity. The list of species
included in the dataset is available in the appendix E. With regards to the infrastructure, the
tests reported in the publications were performed in the Picasso multiprocessor located at the
University of Málaga, Spain.1

In our first paper, we conducted three experiments to validate the framework, using
progressiveMauve and GRIMM-Synteny to compare our results.

• The first experiment is aimed to illustrate the algorithm using a simple pairwise
comparison.

• In a second experiment, we compared our method Gecko-CSB against GRIMM-
Synteny for a mammalian genome comparison (chromosome 18 of human and mouse).
GRIMM-Synteny detects duplications in an early step before detecting SBs. As a
consequence, duplications do not break collinearity of other SBs, and breakpoints are
lost in the process.

• A massive comparison was carried out in a third experiment. We perform 2,278
pairwise sequence comparisons using Gecko-CSB and progressiveMauve. Results

1http://www.scbi.uma.es

30 Results and discussion

show the same tendency shown in the first experiment: better coverage at all levels of
orthology, especially in the less related genomes.

In the second publication, three additional experiments were conducted to validate the
method to refine SBs (Gecko-refined-CSB):

• In a first experiment, a simple case illustrates the algorithm behavior in the SB border-
refinement method using two close related species of Mycoplasma genus in which an
inversion is detected. We focus in the results of Gecko-refined-CSB for the inverted
SB.

• In a second experiment, we use CASSIS to refine the same simple example in order
to compare it with Gecko-refined-CSB. Results are widely different, mostly because
CASSIS does not consider repetitions.

• Finally, a massive comparison is carried out in the third experiment to avoid the bias
that a selection of two particular genomes could introduce. Our method refined 2,213
SBs, 829 were trimmed after the refined process and 1,384 were extended. To analyse
the results, BPs sequences were extracted. We also extracted the adjacent regions of the
BPs (located at the SBs beginnings and ends), which we named PRASB (proportional
regions of the adjacent SB) to compare with BPs sequences. For more details about
PRASB, see figure 4.3.

Additionally, several tools and databases have been used as reference to test accuracy
and validate our arguments. For example, NCBI BLASTn has been used for database search
to prove that certain sequences that Gecko-CSB report and others not, are present in other
species, supporting the significance of these sequences in the rearrangement event history.
SMA3s [67] and blast2GO [27] have been used to find biological annotations of sequences,
to compare annotations in BPs and PRASB sequences. Regarding the databases, we have
used the Uniprot bacteria (ftp://ftp.ebi.ac.uk) and NCBI Non-Redundant databases.

Now, we are going to discuss the main results from the publications:

• The framework is able to work in complex environments (i.e., overlapped fragments,
small fragments, highly repeated fragments) and with all HSPs collections provided
by other programs. It is not necessary to apply any previous filtering process to clean
the input of these problematic fragments. The method is automatic in the sense that it
does not need parameters to detect SBs or repetitions. In our case, all parameters are
internally estimated based on distributions. Also we use some formulas to estimate
values to be used in the process.

31

• The framework is designed to deal with overlapped HSPs, one of the main limitations
in current software tools. As a consequence, the method is able to detect repetitions and
organize them in interspersed repeats, tandem repeats or duplications. Dealing with
repetitions also allows to detect more BPs because repetitions break the collinearity
between SBs.

• Since the method is able to detect repetitions, it allows having more coverage in the re-
sults and enhances the quality outperforming state-of-the-art methods. Repetitions are
used to refine the SBs borders according to the consensus alignment of the repetitions.

• The results show that Gecko-CSB is robust and able to deal with genomes related
at different levels of similarity. This means that genomes under comparison can be
closely related to each other, poorly related, or mixed in a heterogeneous dataset where
genomes have different level of relatedness among them. See figure 4.1.

Fig. 4.1 Average length, average percentage of identity, and coverage from all against all
comparison of 68 mycoplasmas. Grouped by closely, remote and poorly related species. The
X and Y axis represent coverage (as percentages) in the sequences. Each point represents
a comparison. The color represents the average identity in the comparison. The shape
represents the average length of the detected blocks. On the top, results from our method,
Gecko-CSB. On the bottom, results from progressiveMauve. In the image it can be observed
that Gecko-CSB works better in terms of getting more coverage over the sequences at the
similar level of identity, especially in those comparisons of poorly related species.

32 Results and discussion

• Our method has more coverage over sequences and over both types of regions (cod-
ing and non-coding regions) than progressiveMauve and GRIMM-Synteny. In our
experiments Gecko-CSB performed around 90% of coverage whilst progressiveMauve
and GRIMM-Synteny performed 70% and 80% respectively. For non-coding regions
Gecko-CSB achieved 76% against 60% and 75%.

• In a massive comparison, around 70% of the BPs detected by Gecko-CSB are sized
below 100 bps and 95% below 300 bps (see figure 4.2). In a particular example of two
genomes highly related, Gecko-CSB reports BPs sized below 100bps whereas CASSIS
reports BPs sized up to 86.000 bps, which seems to be excessive for a BP. A BLAST
search over the CASSIS’s BPs showed that those regions are found in several other
species with high values of identity and coverage, which point out that the sequences
are part of conserved regions. Also, the SMA3s annotation process was carried out
to collect biological annotations over the CASSIS’s BPs sequences, finding several
annotations for that sequences. The same tests were performed over the BPs detected
by Gecko-CSB. In this case, the BPs sequences were not found in other species and no
annotation was found either, supporting that these BPs were not conserved regions.

Fig. 4.2 Frequency distribution of Breakpoint length.

• We also observed that annotations in BPs seem to depend on the relatedness between
genomes under comparison. The sequences were compared against the NCBI non-
redundant protein database, filtered by bacteria taxa. After that, sequences were
mapped and annotated using blast2GO. In poorly related species, we found that BPs
sequences have more biological annotations (27%) than BPs from highly related
genomes (17%).

33

• Regarding the content of the annotations, we found several differences in the biological
process and molecular function categories. Stress response, DNA topological change
and DNA replication were more present in BPs sequences than in PRASB sequences.
On the other hand, DNA damage, SOS response and DNA integration are found in
more proportion in PRASB than BPs sequences.

C

B

A

Fig. 4.3 CSBs before and after the refinement. A) Selection of the Region of Interest (ROI),
between two Computational Synteny Blocks (CSB). B) Representation of the virtual CSBs.
C) Result after the refinement process. We also detect BPs and extract PRASB and GAP
sequences to analyse the accuracy of the method. PRASB and BP have the same length. For
more details of the refinement process visit the second publication [5].

• Results show that regions that are not reported in other state-of-the-art methods but
are detected by Gecko-CSB are coding regions and potential SBs, which can explain
LSGR.

In some cases, Gecko-CSB reports longer fragments than other methods for the same
region of the genomes under comparison. In other situations, Gecko-CSB reports shorter
fragments. In the manuscript [6] we explain the reason of both situations, which can be
summarised as follows:

Gecko-CSB reports longer SBs

If the method detects two SBs that fulfill complete collinearity property, then these two SBs
are concatenated in a single one. Complete collinearity is described in the first publication,
and is based principally on adjacency between SBs. The reason why other methods might
not report this SB is because the final alignment could have less similarity than the two
SBs separately. However, since Gecko-CSB is designed to analyse LSGR, we allow SBs

34 Results and discussion

with less similarity if it helps to understand LSGR events. In order to test the accuracy of
this interpretation, we illustrate one example (see figure 4.4) in which Gecko-CSB reports
a longer SB than progressiveMauve (one of the most used state-of-the-art methods). In
the example, for the same regions in the comparison, progressiveMauve reports three SBs
(B, C and D) whereas Gecko-CSB reports one SB (SB A, which corresponds with the
concatenation of the three SBs, B, C and D that progressiveMauve detects). The reason why
progressiveMauve does not concatenate these three SBs is because the objective function
for the “greedy breakpoint elimination” heuristic process (described in progressiveMauve’s
paper) does not improve when these three SBs are concatenated. A closer inspection of
the region between SBs (E and F) shows a poor conservation (30% and 40% of identity
respectively), and this is the main reason why the progressiveMauve’s objective function is
not improved. However, an annotation process using SMA3s showed that these regions share
the same functionality (DNA restriction-modification system for the first regions E and site
specific DNA-methyltransferase activity for the second region F); supporting that although
conservation is poor, functionality is the same, and therefore the concatenation to report one
single SB makes sense.

Fig. 4.4 Differences of SB detection for a certain region in the genomes using Gecko-CSB
and progressiveMauve methods. (a) Gecko-CSB detects one SB. (b) progressiveMauve
detects three SBs (B,C and D). The reasons of this difference are explained in the main text.

Gecko-CSB reports shorter SBs

In other cases, Gecko-CSB reports a shorter SB than progressiveMauve. The main reason is
because Gecko-CSB detects repetitions, and they break collinearity in SBs, producing more
SBs. However, this is not the only reason, since Gecko-CSB detects smaller regions, they
can also be responsible of breaking the collinearity between SBs. In the fist manuscript we

35

illustrate one example in which for the same region in a genome comparison, progressive-
Mauve reports one SB whereas Gecko-CSB reports three SBs (see figure 4.5). In this case,
Gecko-CSB takes into account a small SB (SB C, around 600 bps of length and 60% of iden-
tity), which breaks the collinearity between the two main SBs A and B. progressiveMauve
concatenates these two SBs because after the concatenation, the resulting SB D has 91% of
identity (before 87% for A and 89% for B of identity). However, a database search using
NCBi BLASTn was carried out using the sequence of this region (the small SB) against
the NR database. The results showed that the main feature of this region is related with
ATPase enzymes (around 35% of all the results) and if we exclude the Mycoplasma Taxa,
the same sequence is found in other species like Plasmodium, Zebrafish or Vitis, supporting
the significance of this “small” SB in order to understand rearrangement events.

Fig. 4.5 Differences of SB detection for a certain region in the genomes using Gecko-
CSB and progressiveMauve methods. (a) Gecko-CSB detects three SBs (A,B and C). (b)
progressiveMauve detects one large SB.

Section 5

Conclusions and future work

5.1 Conclusions

In this thesis we present three publications aimed to the SB detection, refinement and
their applications. A framework for a pairwise SB processing is presented in the first two
publications; an application to the metagenome analysis in the third publication; and we
introduce the basis for a multi comparison SB framework in section 3 (providing definitions,
rules and algorithms).

In a first work, we introduce a parameter-free and robust method aimed to the automatic
SB detection, able to work in complex environments (short repeats, overlapped fragments
and small fragments). This method outperforms current software tools both in number and
quality of the detected SBs. In the publication, a set of definitions is presented to formalize
linearity and collinearity properties in SBs. These properties are useful to detect LSGR such
as inversion, transpositions or duplications.

To validate the results, two different applications were used: progressiveMauve and
GRIMM-Synteny in three experiments. Parameters in those applications were set to produce
comparable results.

In all cases:

• Our method obtains more coverage and better quality

• Our method is designed for dealing with overlapped HSPs and detect repeats, one of
the main drawbacks in current software.

• Our method works in complex environments (small fragments and repeats) and with
HSPs collections provided by other programs.

• Our method is automatic in the sense that it does not need parameters to detect SBs.

38 Conclusions and future work

• Our method is designed to detect SBs that can explain LSGR.

This method is the starting point for SBs and BP refinement that was carried out in a
second work. In the second publication, we developed a method to refine the borders of SB
taking into account repetitions and using them to improve the accuracy of the refinement. The
method uses a Finite State Machine (FSM) to find the transition point, instead of maximizing
a target function like other methods. This FSM is designed to detect transitions in the
difference between repeats and SBs alignments. Due to the methods’ features, BPs are
detected as regions or points, depending on the specific case. The FSM needs two thresholds
to detect the transition points. Although so far these parameters are fixed we will work on a
dynamic configuration of them based on SB similarity.

Several analyses were carried out in order to find biological differences between BPs
and SBs borders with satisfactory results. BPs sequences are biologically richer than the
SB borders (corresponding with the Proportional Region of the Adjacent Syntney Block,
PRASB, which is defined in the second publication). Both searches using Uniprot and NCBI
databases reported more results in BPs sequences than the PRASB sequences. However,
PRASB sequences showed more diversity in annotations than BP sequences.

Our experiments also revealed that there might be a correlation between the number of
sequences annotated in BPs and PRASB; and the relatedness of the species from which
those sequences were extracted. This is to say, BPs detected in poorly related species were
biologically richer than BPs detected in close species in our experiments. We also found that
there are biological differences between what we consider as BPs and the regions between
BPs, whereas other methods just consider the whole region as BP.

Detection of SBs in a multiple genome comparison was useful to face the metagenome
analysis described in the third publication. Metagenome reads mapping in non-SB regions
from certain genome strongly support that such genome is present in the metagenome.

5.2 Future work

The proposed framework for multiple comparisons SB detection provides the basis for a better
understanding of genome evolution and its applications go beyond a precise SB detection:

• Refining SBs also provides refined BPs, which can be used as input to find hidden
patterns or extract features in order to set up a formal definition of BP, which could
enable their detection. The detection of BPs in a genome sequence may help the
understanding of LSGR and the prediction of future LSGRs.

5.2 Future work 39

• Frequencies of LSGR occurrences can be used for a LSGR matrix penalization in a
refined inter-genome distance measure, which could penalise LSGRs in the same way
that alignment methods penalise nucleotide or aminoacid substitutions or gaps.

• The rearrangement history reconstruction could also be helpful for the phylogenetic
organizations, especially in those cases in which other methods based on sequence
similarity generate contradictory results.

• The proposed framework enables the rearrangement history reconstruction between
species towards the last common ancestor (LCA). In the process, intermediate virtual
species can be calculated. A database of intermediate virtual species can be generated,
and it could help to the metagenome mapping analysis since the read we want to map
belongs to a different strain than genomes registered in public databases. For instance,
if we have a read that belongs to Genome C (see figure 5.1) that are not registered in
the database, the read could map better in the LCA-ABC than in genomes A or B.

Fig. 5.1 GenomeA and GenomeB are included in the public database. Genome C is not in
the database. If a certain metagenome read comes from Genome C specie, it might match
better in the Last Common Ancestor-ABC than in the genomes A or B, because the genome
C is not present in the database.

5.2.1 Detecting Break Points using a Machine Learning approach

As we deduced in section 3, Break Points (BP) should be defined as a region in the sequence,
instead as a relation among sequences (the region between two SBs) although so far, the way
to detect them is through sequence comparison. Machine Learning methods have successfully
solved high complex problems specially when hidden patterns are involved. Many authors
have suggested that BP might be weak regions in the genome more likely to break. If this

40 Conclusions and future work

hypothesis were true, there would be a chance to predict Break Points just analysing the
sequence.

Long-Short Term Memory cells (LSTM) [50] have shown to be powerful to discover
hidden patterns in sequences. In comparative genomics field it has been used for searching
homology in sequences [49].

As a future work, we will use LSTMs to train a network to detect BPs. Labels for BP
positive and negative class can be taken based on SBs detected by our method (or any other
method that detects SBs). The positive class will be the collection of BPs. For the negative
class, we will extract subsequences from SBs following the length distribution of the BP
collection, in order to avoid any length bias. Our input could be coded following the approach
used in [49]. We could train a classifier by gradient descent to minimize cross entropy loss
function. In figure 5.2 we draft the proposed architecture.

Fig. 5.2 The input is encoded as one-hot vector. After the LSTM layer, we use a fully
connected layer to combine all the LSTM cells outputs to produce a single output.

References

[1] Alan Christie, D. (1998). Genome Rearrangement Problems. PhD thesis, University of
Glasgow.

[2] Alekseyev, M. A. and Pevzner, P. A. (2007). Are there rearrangement hotspots in the
human genome? PLoS Computational Biology, 3(11):2111–2121.

[3] Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local
alignment search tool. Journal of molecular biology, 215(3):403–10.

[4] Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., and
Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic acids research, 25(17):3389–402.

[5] Arjona-Medina, J. and Trelles, O. (2016a). Refining borders of genome-rearrangements
including repetitions. BMC Genomics, 17(S8):804.

[6] Arjona-Medina, J. A. and Trelles, O. (2016b). Computational Synteny Block: A Frame-
work to Identify Evolutionary Events. IEEE Transactions on NanoBioscience, 15(4):1–11.

[7] Attie, O., Darling, A. E., and Yancopoulos, S. (2011). The rise and fall of breakpoint
reuse depending on genome resolution. BMC Bioinformatics, 12(Suppl 9):S1.

[8] Bader, D. a., Moret, B. M., and Yan, M. (2001). A linear-time algorithm for computing
inversion distance between signed permutations with an experimental study. Journal of
computational biology : a journal of computational molecular cell biology, 8(5):483–91.

[9] Bader, M. and Ohlebusch, E. (2007). Sorting by weighted reversals, transpositions, and
inverted transpositions. Journal of computational biology : a journal of computational
molecular cell biology, 14(5):615–36.

[10] Bafna, V. and Pevzner, P. a. (1998). Sorting by Transpositions. SIAM Journal on
Discrete Mathematics, 11(2):224–240.

[11] Bailey, J. a., Baertsch, R., Kent, W. J., Haussler, D., and Eichler, E. E. (2004). Hotspots
of mammalian chromosomal evolution. Genome biology, 5(4):R23.

[12] Bairoch, A. and Bucher, P. (1994). PROSITE: recent developments. Nucleic acids
research, 22(17):3583–9.

[13] Baudet, C., Lemaitre, C., Dias, Z., Gautier, C., Tannier, E., and Sagot, M. F. (2010).
Cassis: Detection of genomic rearrangement breakpoints. Bioinformatics, 26(15):1897–
1898.

42 References

[14] Bedell, J., Korf, I., and Yandell, M. (2003). Blast.

[15] Berman, P. and Hannenhalli, S. (1996). Fast sorting by reversal. Combinatorial Pattern
Matching.

[16] Berman, P. and Karpinski, M. (1999). On some tighter inapproximability results. Pro-
ceedings of the 26th international Conference on Automata, Languages and Programming,
1644:200–209.

[17] Biller, P., Guéguen, L., Knibbe, C., and Tannier, E. (2016). Breaking good: accounting
for fragility of genomic regions in rearrangement distance estimation. Genome Biology
and Evolution, 8(5):evw083.

[18] Blanchette, M., Bourque, G., and Sankoff, D. (1997). Breakpoint Phylogenies. Genome
Inform Ser Workshop Genome Inform, 8:25–34.

[19] Blanchette, M., Kunisawa, T., and Sankoff, D. (1996). Parametric genome rearrange-
ment. Gene, 172(1):GC11–7.

[20] Bonham-Carter, O., Steele, J., and Bastola, D. (2013). Alignment-free genetic sequence
comparisons: A review of recent approaches by word analysis. Briefings in Bioinformatics,
15(6):890–905.

[21] Caprara, A. (1997). Sorting by reversals is difficult. Proceedings of the first annual
international conference

[22] Capy, P., Langin, T., Anxolabehere, D., and Bazin, C. (1998). Dynamics and evolution
of transposable elements. Molecular Biology Intelligence Unit, page 197.

[23] Carrillo, H. and Lipman, D. (1988). The Multiple Sequence Alignment Problem in
Biology. SIAM Journal on Applied Mathematics, 48(5):1073–1082.

[24] Chao, K.-M. and Zhang, L. (2009). Sequence comparison : theory and methods.
Springer.

[25] Choi, V., Zheng, C., Zhu, Q., and Sankoff, D. (2007). Algorithms for the extraction of
synteny blocks from comparative maps. Algorithms in Bioinformatics, pages 277–288.

[26] Chu, T. C., Liu, T., Lee, D. T., Lee, G. C., and Shih, A. C. C. (2009). GR-Aligner:
An algorithm for aligning pairwise genomic sequences containing rearrangement events.
Bioinformatics, 25(17):2188–2193.

[27] Conesa, A., Götz, S., García-Gómez, J. M., Terol, J., Talón, M., and Robles, M.
(2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional
genomics research. Bioinformatics (Oxford, England), 21(18):3674–6.

[28] Corpet, F. (1988). Multiple sequence alignment with hierarchical clustering. Nucleic
Acids Research, 16(22):10881–10890.

[29] Darling, A. C. E., Mau, B., Blattner, F. R., and Perna, N. T. (2004). Mauve : Multiple
Alignment of Conserved Genomic Sequence With Rearrangements Mauve : Multiple
Alignment of Conserved Genomic Sequence With Rearrangements. pages 1394–1403.

References 43

[30] Darling, A. E., Mau, B., and Perna, N. T. (2010). Progressivemauve: Multiple genome
alignment with gene gain, loss and rearrangement. PLoS ONE, 5(6).

[31] Dayhoff, M. O. (1978). Atlas of Protein Sequence and Structure, volume 3. Silver
Spring.

[32] Delcher, A. L., Kasif, S., Fleischmann, R. D., Peterson, J., White, O., and Salzberg,
S. L. (1999). Alignment of whole genomes. Nucleic acids research, 27(11):2369–76.

[33] Dias, Z. and Meidanis, J. (2001). Genome rearrangements distance by fusion, fission,
and transposition is easy. Proceedings Eighth Symposium on String Processing and
Information Retrieval, pages 250–253.

[34] Doolittle, W. F. and Sapienza, C. (1980). Selfish genes, the phenotype paradigm and
genome evolution. Nature, 284(5757):601–603.

[35] El-Mabrouk, N. (2000). Genome rearrangement by reversals and insertions/deletions
of contiguous segments. In Combinatorial Pattern Matching, pages 222–234.

[36] Eriksen, N. (2002). (1 +) -Approximation of sorting by reversals and transpositions.
289:517–529.

[37] Feijão, P. and Meidanis, J. (2013). Extending the algebraic formalism for genome
rearrangements to include linear chromosomes. IEEE/ACM transactions on computational
biology and bioinformatics / IEEE, ACM, 10(4):819–31.

[38] Fostier, J., Proost, S., Dhoedt, B., Saeys, Y., Demeester, P., van de Peer, Y., and
Vandepoele, K. (2011). A greedy, graph-based algorithm for the alignment of multiple
homologous gene lists. Bioinformatics, 27(6):749–756.

[39] Ghiurcuta, C. G. and Moret, B. M. E. (2014). Evaluating synteny for improved
comparative studies. Bioinformatics, 30:9–18.

[40] Gotoh, O. (1982). An improved algorithm for matching biological sequences. Journal
of Molecular Biology, 162(3):705–708.

[41] Gotoh, O. (1996). Significant Improvement in Accuracy of Multiple Protein Sequence
Alignments by Iterative Refinement as Assessed by Reference to Structural Alignments.
Journal of Molecular Biology, 264(4):823–838.

[42] Gu, Q., Peng, S., and Sudborough, H. (1999). A 2-approximation algorithm for genome
rearrangements by reversals and transpositions. Theoretical Computer Science, 3975(98).

[43] GUPTA, S. K., KECECIOGLU, J. D., and SCHÄFFER, A. A. (1995). Improving
the Practical Space and Time Efficiency of the Shortest-Paths Approach to Sum-of-Pairs
Multiple Sequence Alignment. Journal of Computational Biology, 2(3):459–472.

[44] Hannenhalli, S. and Pevzner, P. (1996). To Cut... or Not to Cut (Applications of
Comparative Physical Maps in Molecular Evolution). SODA, pages 304–313.

[45] Hartman, T. and Sharan, R. (2005). A 1.5-approximation algorithm for sorting by
transpositions and transreversals. Journal of Computer and System Sciences, 70(3):300–
320.

44 References

[46] Haubold, B., Klotzl, F., and Pfaffelhuber, P. (2014). andi: Fast and accurate estimation
of evolutionary distances between closely related genomes. Bioinformatics, (December
2014):1–7.

[47] Henikoff, S. and Henikoff, J. G. (1992). Amino acid substitution matrices from protein
blocks. Proceedings of the National Academy of Sciences of the United States of America,
89(22):10915–10919.

[48] Hirschberg, D. S. (1975). A linear space algorithm for computing maximal common
subsequences. Communications of the ACM, 18(6):341–343.

[49] Hochreiter, S., Heusel, M., and Obermayer, K. (2007). Fast model-based protein
homology detection without alignment. Bioinformatics, 23(14):1728–1736.

[50] Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term Memory. Neural Compu-
tation, 9(8):1735–1780.

[51] John D. Storey (2002). A direct approach approach to false discovery rates. Journal of
the Royal Statistical Society, 64(3):479–498.

[52] Kaminker, J. S., Bergman, C. M., Kronmiller, B., Carlson, J., Svirskas, R., Patel, S.,
Frise, E., Wheeler, D. A., Lewis, S. E., Rubin, G. M., Ashburner, M., and Celniker,
S. E. (2002). The transposable elements of the Drosophila melanogaster euchromatin: a
genomics perspective. Genome biology, 3(12):RESEARCH0084.

[53] Kaplan, H., Shamir, R., and Tarjan, R. E. (2000). A Faster and Simpler Algorithm for
Sorting Signed Permutations by Reversals. SIAM Journal on Computing, 29(3):880–892.

[54] Karlin, S. and Altschul, S. F. (1990). Methods for assessing the statistical significance
of molecular sequence features by using general scoring schemes. Proceedings of the
National Academy of Sciences of the United States of America, 87(6):2264–8.

[55] Kazazian, H. H. (2004). Mobile elements: drivers of genome evolution. Science (New
York, N.Y.), 303(5664):1626–1632.

[56] Kececioglu, J. and Sankoff, D. (1995). Exact and approximation algorithms for sorting
by reversals, with application to genome rearrangement. Algorithmica.

[57] Lemaitre, C., Tannier, E., Gautier, C., and Sagot, M.-F. (2008). Precise detection of
rearrangement breakpoints in mammalian chromosomes. BMC bioinformatics, 9:286.

[58] Lemey, P., Salemi, M., and Vandamme, A.-M. (2009). The phylogenetic handbook: a
practical approach to phylogenetic analysis and hypothesis testing. Cambridge University
Press.

[59] Lerat, E. (2010). Identifying repeats and transposable elements in sequenced genomes:
how to find your way through the dense forest of programs. Heredity, 104(6):520–533.

[60] Li, Z., Wang, L., and Zhang, K. (2006). Algorithmic approaches for genome rearrange-
ment: a review. . . . , Part C: Applications and Reviews, . . . , 36(5):636–647.

References 45

[61] Lin, G. H. and Xue, G. (2001). Signed genome rearrangement by reversals and
transpositions: Models and approximations. Theoretical Computer Science, 259(1-2):513–
531.

[62] Lipman, D. J., Altschul, S. F., and Kececioglu, J. D. (1989). A tool for multiple sequence
alignment. Proceedings of the National Academy of Sciences, 86(12):4412–4415.

[63] Mani, R.-S. and Chinnaiyan, A. M. (2010). Triggers for genomic rearrangements :.
Nature Publishing Group, 11(12):819–829.

[64] Mccammon, J. A. and Wolynes, P. G. (1998). Highly specific protein sequence motifs
for genome analysis. Computational Biomolecular Science, 95(May):5865–5871.

[65] Miklós, I. and Tannier, E. (2010). Bayesian sampling of genomic rearrangement
scenarios via double cut and join. Bioinformatics, 26(24):3012–3019.

[66] Morgenstern, B. (2004). DIALIGN: Multiple DNA and protein sequence alignment at
BiBiServ. Nucleic Acids Research, 32(WEB SERVER ISS.):W33–6.

[67] Muñoz-Mérida, A., Viguera, E., Claros, M. G., Trelles, O., and Pérez-Pulido, A. J.
(2014). Sma3s: A Three-Step Modular Annotator for Large Sequence Datasets. DNA
research : an international journal for rapid publication of reports on genes and genomes,
(February):1–13.

[68] Nadeau, J. H. and Taylor, B. a. (1984). Lengths of chromosomal segments conserved
since divergence of man and mouse. Proceedings of the National Academy of Sciences of
the United States of America, 81(February):814–818.

[69] Needleman, S. B. and Wunsch, C. D. (1970). A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of molecular biology,
48(3):443–53.

[70] Nicolas, S. D., Monod, H., Eber, F., Chèvre, A.-M., and Jenczewski, E. (2012). Non-
random distribution of extensive chromosome rearrangements in Brassica napus depends
on genome organization. The Plant Journal, 70(4):691–703.

[71] Notredame, C. and Higgins, D. G. (1996). SAGA: Sequence alignment by genetic
algorithm. Nucleic Acids Research, 24(8):1515–1524.

[72] Notredame, C., Higgins, D. G., & Heringa, J., Notredame, C., Higgins, D. G., and
Heringa, J. (2000). T-coffee: a novel method for fast and accurate multiple sequence
alignment. Journal of Molecular Biology, 302(1):205–217.

[73] Pan, X., Stein, L., and Brendel, V. (2005). SynBrowse: A synteny browser for compar-
ative sequence analysis. Bioinformatics, 21(17):3461–3468.

[74] Pearson, W. R. (1990). Rapid and sensitive sequence comparison with FASTP and
FASTA. Methods in enzymology, 183(1988):63–98.

[75] Pellicer, J., Fay, M. F., and Leitch, I. J. (2010). The largest eukaryotic genome of them
all? Botanical Journal of the Linnean Society, 164(1):10–15.

46 References

[76] Pérez-Wohlfeil, E., Arjona-Medina, J. A., Torreno, O., Ulzurrun, E., and Trelles, O.
(2016). Computational workflow for the fine-grained analysis of metagenomic samples.
BMC Genomics, 17(S8):802.

[77] Pevzner, P. and Tesler, G. (2003). Genome Rearrangements in Mammalian Evolution :
Lessons From Human and Mouse. Genome Research, 13(1):37–45.

[78] Pham, S. and Pevzner, P. (2010). DRIMM-Synteny: decomposing genomes into
evolutionary conserved segments. Bioinformatics, 26(20):2509–16.

[79] Saha, S., Bridges, S., Magbanua, Z. V., and Peterson, D. G. (2008). Empirical compari-
son of ab initio repeat finding programs. Nucleic Acids Research, 36(7):2284–2294.

[80] Sankoff, D. and Trinh, P. (2005). Chromosomal Breakpoint Reuse in Genome Sequence
Rearrangement. Journal of Computational Biology, 12(6):812–821.

[81] SanMiguel, P., Tikhonov, a., Jin, Y. K., Motchoulskaia, N., Zakharov, D., Melake-
Berhan, a., Springer, P. S., Edwards, K. J., Lee, M., Avramova, Z., and Bennetzen, J. L.
(1996). Nested retrotransposons in the intergenic regions of the maize genome. Science
(New York, N.Y.), 274(5288):765–768.

[82] Schnepf, N., Deback, C., Dehee, A., Gault, E., Parez, N., and Garbarg-Chenon, A.
(2008). Rearrangements of rotavirus genomic segment 11 are generated during acute
infection of immunocompetent children and do not occur at random. Journal of virology,
82(7):3689–96.

[83] Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R.,
McWilliam, H., Remmert, M., Soding, J., Thompson, J. D., and Higgins, D. G. (2014).
Fast, scalable generation of high-quality protein multiple sequence alignments using
Clustal Omega. Molecular Systems Biology, 7(1):539–539.

[84] Simossis, V. A. and Heringa, J. (2005). PRALINE: a multiple sequence alignment
toolbox that integrates homology-extended and secondary structure information. Nucleic
Acids Research, 33(Web Server):W289–W294.

[85] Skovgaard, M., Jensen, L. J., Brunak, S., Ussery, D., and Krogh, A. (2001). On the
total number of genes and their length distribution in complete microbial genomes. Trends
in Genetics, 17(8):425–428.

[86] Smith, C. D., Edgar, R. C., Yandell, M. D., Smith, D. R., Celniker, S. E., Myers, E. W.,
and Karpen, G. H. (2007). Improved repeat identification and masking in Dipterans. Gene,
389(1):1–9.

[87] Tesler, G. (2002). GRIMM: genome rearrangements web server. Bioinformatics
(Oxford, England), 18(3):492–493.

[88] Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). CLUSTAL W: Improving
the sensitivity of progressive multiple sequence alignment through sequence weight-
ing, position-specific gap penalties and weight matrix choice. Nucleic Acids Research,
22(22):4673–4680.

References 47

[89] Torreno, O. and Trelles, O. (2015). Breaking the computational barriers of pairwise
genome comparison. BMC Bioinformatics, 16(1):250.

[Walter et al.] Walter, M., Dias, Z., and Meidanis, J. Reversal and transposition distance of
linear chromosomes. Proceedings. String Processing and Information Retrieval: A South
American Symposium (Cat. No.98EX207), pages 96–102.

[91] WANG, L. and JIANG, T. (1994). On the Complexity of Multiple Sequence Alignment.
Journal of Computational Biology, 1(4):337–348.

[92] Wang, L.-S. (2001). {Exact-IEBP}: A New Technique for Estimating Evolutionary
Distances Between Whole Genomes. Proc.\ 1st Workshop Algs.\ in Bioinformatics
({WABI’01}), 2149:175–188.

[93] Wang, L.-S., Warnow, T., Moret, B. M. E., Jansen, R. K., and Raubeson, L. a. (2006).
Distance-based genome rearrangement phylogeny. Journal of molecular evolution,
63(4):473–83.

[94] Yakir, B. and Siegmund, D. (2000). Approximate p-values for local sequence
alignments. The Annals of Statistics, 28(3):657–680.

[95] Yancopoulos, S., Attie, O., and Friedberg, R. (2005). Efficient sorting of genomic
permutations by translocation, inversion and block interchange. Bioinformatics (Oxford,
England), 21(16):3340–6.

[96] Yancopoulos, S. and Friedberg, R. (2008). Sorting genomes with insertions, deletions
and duplications by DCJ. In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 5267
LNBI, pages 170–183.

[97] Zeng, X., Nesbitt, M. J., Pei, J., Wang, K., Vergara, I. a., and Chen, N. (2008). Ortho-
Cluster: a new tool for mining synteny blocks and applications in comparative genomics.
EDBT ’08: Proceedings of the 11th international conference on Extending database
technology, pages 656–667.

Section A

Sequence comparison algorithms

A DNA sequence is a string of symbols from an alphabet. Formally, DNA can be described as
a sequence S = s1,s2,s3, . . . ,sn, where si ∈ SA,C,G,T ; being A for Adenine, C for Cytosine,
G for Guanine and T for Thymine. The length of sequences can vary between 1e04 (Human
mitochondrion) and 1,3e14 (Paris Japonica) [75], which involves a computational challenge
to store, process, and mining information, keeping in mind the scalability of the problem.

A.1 Pairwise sequence alignments

Dot-plot matrix methods were used for visualizing similarities between sequences with a
length less than 1 Mb. In this method, all possible matches are taken into account. This way,
diagonals represent similarity regions of the sequence while isolated points represent random
matches. This visualization can be improved by filtering random matches using a sliding
window of length W and allowing for some mistmatches, or stringency threshold. For longer
sequences, long execution time and computational memory requirements make this method
not feasible.

In 1970 Needleman and Wunsch proposed a global alignment method base on dynamic
programming [69]. This approach ensures the best possible alignment given a substitution
matrix, such a PAM[31] or BLOSUM[47], and other parameters to penalise gaps in the
alignment. This method is O(mn) complexity both in memory and time, which could be
prohibitive in long sequences like genomes. An optimization of this method was carried out
by Dan Hirschberg, using less memory O(m+n), but still requiring O(mn) time [48].

Later on, Smith and Waterman developed a local alignment method for sequences[86].
Actually, it was a variation of Needleman and Wunsch method, keeping the substitution
matrix and the gap-scoring scheme but setting to zero those cells in the similarity matrix with

50 Sequence comparison algorithms

negative score. The complexity for this algorithm is o(n2M). Osamu Gotoh published an
optimization of this method, running in o(mn) time [40].

The main difference between both methods could be resumed as followed:

• Needleman and Wunsch method aligns the sequences fixing the first and the last
position of both sequences. It attempts to align every symbol in the sequence, allowing
some gaps, but the main purpose is to get a global alignment. This is especially useful
when the two sequences to compare are highly similar. For instance:

ATCGGATCGACTGGCTAGATCATCGCTGG
CGAGCATC-ACTGTCT-GATCGACCTTAG
* *** **** ** **** * * *

• As an alternative to global methods, Smith and Waterman local method align the
sequences with a bigger degree of freedom, allowing the alignment to start or end with
gaps. This is extremely useful when the two sequences are substantially dissimilar in
general but suspected of having a highly related sub region.

ATCAAGGAGATCATCGCTGGACTGAGTGGCT----ACGTGGTATGT
ATC----CGATCATCGCTGG-CTGATCGACCTTCTACGT-------
*** ************ **** * * ****

Back then, available sequences were proteins or genes, with a length between 20 and
400 amino acids (375 in average for proteins in humans) [85] and around 1.5Kb for genes in
average(http://www.gencodegenes.org/). Thus, methods previously described had no major
problem regarding computational effort. However, when full genomes came up, new methods
appeared to solve memory and running limitations.

A.2 Multiple sequence alignment algorithms

Those methods opened a new window to address the multiple sequence alignment domain.
For many of the algorithms in this field, the complexity is NP-hard. There are many different
methods for multiple sequence alignment. They can be classified in four categories:

• exact methods: Proved to NP-Hard by Wang and Jiang. [91].Some MSA methods[23,
62, 43],

• progressive methods: CLUSTALW[88],Clustal Omega [83], PRALINE [84], T-Coffee
[72].

A.3 New strategies: homology search methods 51

• iterative and search algorithms: DIALIGN[66], MultiAlign[28], PRRP[41], SAGA[71];

• local methods: eMOTIF[64], PROSITE [12].

For more details, visit Sequence Comparison: Theory and methods [24], Chapter 5 or
The Phylogenetic Handbook [58], Chapter 3.

A.3 New strategies: homology search methods

Many methods started to reduce the space search of the problem by finding small words of
length k, also called k-mers, that two or more sequences share. Once these shared k-mers are
calculated in the sequence to compare, they represent a hit or match, and can be represented
as points (or seeds) in the dot-matrix. Then, the algorithm tries to extend the alignment
at this point. This idea was introduced first by FASTA[74] and later by BLAST[3]. The
main difference between them resides in the way to calculate the hits (or seeds). For FASTA
method, there is a match (seed) if the k-mers are exactly the same. For BLAST method, they
allow some degree of dissimilarity.

New methods adopted this computational space reduction strategy and kept working to
improve sensitivity, speed and memory limitations. For example, Psi-BLAST[4], MUM-
mer [32] or progressiveMauve[30].

In order to solve memory limitation, other methods explored different strategies. For
example, Gecko [89] follows the out-of-core strategy, using external memory as a support
for intermediate results when it is necessary. As a result, multiple genome comparison can
be done in a reasonable time.

Output of these methods are generally a collection of segment pairs that reach some level
of score, meaning some degree of similarity. They are called High Scoring Segment Pair
(HSP).

A.4 Statistical Significance

A necessary post-processing step when calculating HSPs is to assign some value that measures
how likely or unlikely a specific alignment is to be found. This value is calculated under a
statistical model in which the HSPs are distributed.

In 1990, Karlin and Altshul published a theory of local alignment statistics [54]. This
equation states that the number of alignment expected by chance E during a sequence
database search is a function of the size of the sear space (m∗n), the normalized score (λS)

52 Sequence comparison algorithms

and a minor constant (k). The size of the search space is simply the product of the size of the
the query (m) and the size of database (n) [14].

E = kmne−(λScore) (A.1)

K and λ are calculated using the nucleotide frequencies and the scoring matrix.
Using this equation a significance value can be assigned to a HSP. By choosing a threshold

the sensibility of the results can be controlled.
Recently, the distribution of the maximum score in gappd alignment was deducted[94, 51]

A.5 Dealing with repetitions

Repeats, tandem repeats and duplications make the detection of SBs extremely difficult.
Thus, in order to make Synteny Blocks (SBs) detection easier, many of the methods used to
calculate SBs avoid these events, such as DRIMM-Synteny [78], GRIMM-Synteny [77] or
GRAligner [26]. However, a considerable part of genome is repetitive. Human genome is
almost 50% repetitive DNA and 80% for maize genome [81]. It is also know that repetitions
-mostly associated with mobile elements- have been driven evolution in many ways [55],
playing an interesting role [34].

Repeats can be classified in two main groups. Tandem repeats and dispersed repeats.
Tandem repeats are nucleotide patterns that are repeated in an adyancent way. Depending on
the number of repetitions, and the pattern size, they can be classified in satellites (from 1 to
200 nucleotides); microsatellite, or simple sequence repeat, small patterns up to 6 nucleotides;
minisatellites (from 10 to 60 nucleotides) and rDNA repeats. Dispersed repeats, mainly
constitute by transposable elements, can be classified according to the intermediate element
that help them to move. Connection between them could be used to make a reconstruction of
the evolution history [22].

Detection of these elements is complicated due to punctual mutations, insertions, deletions
and rearrangements. Moreover, some times these elements are combined creating nested
elements. [81, 52]. Methods to detect repetitions can be classified in two main groups:
database search and de novo approaches.

The first ones use a database containing known repetitions such as RepeatMasker, Censor,
Maskeraid, Plotrep or Greedier. The main limitation of these methods is that they are
not capable to identify repetitions that are not catalogued in the database in which we are
searching. A variation of this method is to use the repeats signature in which we are interested.
This approach allows finding repetitions that are not catalogued but we have to know in

A.5 Dealing with repetitions 53

advance the features of the sequence we expect to find. (RTAnalyzer, TSDfinder, SINEDR,
FINDMITE. . .)

De novo approaches try to find any kind of repeats in the sequence. In this group we
can differentiate self-comparison methods like Repeat Pattern toolkit, RECON, PILER;
and method based in k-mers and spaced seed approaches like Reputer, Repeat-Match, Re-
peatScout, Repseek. A comparative study showed that RepeatScout performed the best
results [79].

Due to difference between methods and diversity of purpose, it would be possible to create
pipelines to exploit the advantages of all of them. However, software dependencies, updates
involving input and output format changes, lack of maintenance, lack of documentation and
other problems described by Lerat [59] make extremely difficult in practice to utilize these
methods, specially the combination of some of them in a pipe line. As a consequence, there
is a big amount of software that, in broad strokes, share the same purpose.

All this methods are designed to find repeats in the sequence, but they are not designed in
a rearrangement framework. Their only purpose is just to identify them.

Section B

Methods in the State of art for Synteny
Block detection

Orthocluster

Orthocluster (Zeng et al. 2008) assumes that a mapping between genes in genomes under
comparison is given. They use several user-defined parameter: lower and upper bound on the
number of genes in each cluster, maximal percentage of mismatched in map genes, synteny
block size and whether gene ordering or strandedness is preserved or not.

Cyntenator

(Rödelsperger , Dieterich 2010). They use BLASTP to extract fragments but instead of using
nucleotids or aminoacids, they use an alphabet of genes. Then they extract alignments with a
score higher than a predefined threshold and then they implement several filters. For example,
to compare rat/mouse with human they only use sequence regions shared by mouse-rat. All
other sequences regions from mouse or rat are discarded. Then they define a threshold for
total number of alignments, and the times that they can occurred.

Cassis

(Baudet et al. 2010) Cassis receives as an input a list of pairs of one2one orthologous genes.
Genes which have same order and direction in both genomes are merged. Overlapping genes
that do not respect this criteria are discarded. To create synteny blocks, they use the algorithm
described by Lemaitre (sagot), using k=2. This parameter enables individual isolated genes
to be out of order without disrupting a synteny block because all synteny blocks must contain
at least two genes.

56 Methods in the State of art for Synteny Block detection

DRIMM-Synteny

DRIMM-Synteny (Pham , Pevzner 2010) is based on de Bruijn graphs. DRIMM-Synteny
takes a set of anchors without overlaps that can be local alignments or pairs of similar genes.
(but they use gene order in their results).

MCScan

MCScan combines information of gene position and protein sequences to perform an all-
against all using BLASTP. To search for homology MCSscan (Wang et al. 2012) compares
protein-coding genes from each genome and itself. To avoid local collinear gene pairs, if
consecutive matches have a common gene and its paired genes are separated by fewer than
five genes, these matches are collapsed using a representative pair with the smallest BLASTP
E-value. Then they use a scoring schema assuming that two genes are collinear if the number
of intervening genes between them is fewer than 25. Finally, non-overlapping chains with
scores over 250 (involving at least 5 collinear genes) are reported.

i-ADHoRe v3.0

(Proost et al. 2012) i-ADHoRe needs two user-defined parameters, the gap size and qvalue,
and they warn that this selection have a direct impact on the accuracy and sensitivity of the
collinearity detection. To calculate Synteny Blocks, first they get gene family information,
then they build a gene homology matrix (GHM). Significant collinear regions founded in
GHM are aligned using a novel alignment algorithm (GG2)[38] based on protein-Needledman
and Wunsch algorithm.

GR-Aligner

(Chu et al. 2009) GR-Aligner searches only non-overlapping matches, with a certain pvalue
and score higher than a given threshold from a BLAST comparison and collected them as
elements for a candidate of SB. Two fragment from BLAST are then merged into a Synteny
Block if 1) They are adjacent, 2) the space between fragment is smaller than the minimum
of the fragment length, and 3) if the candidate SB final score is higher than the minimum
score of the fragments. They cannot deal with duplications. They cannot treat in inverted
transpositions o transpositions. Only block interchange (they call it simple translocations).

57

ProgressiveMauve

(Darling et al. 2010) ProgressiveMauve uses HOXD matrix to discriminate well between
homologous and unrelated sequence in a variety of organism. To minimize compute time and
focus only on anchoring coverage on single-copy regions, their method only extends seeds
that are unique in two or more genomes. They define LMA as local multiple alignments.
Is a generalization of Maximal-Unique-Matches (MUM) but including multiple genomes.
They define a pairwise locally collinear block (LCB) as a subset of local alignments (LMA)
in a genome that occur in the same order and orientation in a pair of genomes and they are
free from internal rearrangements. After transform LMAs into local pairwise alignments,
they apply well-known breakpoint analyses procedure [29, 18], to minimally partition into
pairwise LCB. They use a breakpoint penalty which is a user controlled parameter (they are
working on a parameter which take into account how related species are). Then they remove
breakpoints by greedy breakpoint elimination to make LCBs bigger. Then use a recursive
anchoring to improve alignments. They use a smaller k to find new alignments and they
incorporate them into the main alignment. After that they calculate again the score. This
process is recursive and it stops when difference of score cannot improve more than a given
parameter. They apply a Hidden Markov Chain to predict pairwise homology, to avoid align
non related regions in genome.

Shuffle-LAGAN

(Brudno et al. 2003) Shuffle-LAGAN uses CHAOS to generate local alignments between
two sequences. Given a word length k and degeneracy c it reports words of k length that
match with a c differences. Then, given a distance d and maximum shift s, two letters in
different sequences are joined if they are lower than d and their difference is less than s.
Chain are extended using ungapped BLAST until the score drops below a certain threshold.
After computing the chains, the program CHAOS scores each chain and insert gaps. All local
alignments scoring above 2000 are returned and used to create the 1-monotonic conservation
map. To build it they use different gap penalties with different thresholds. In their paper they
work with rearrangement events longer than 100 bp and shorter than 100Kbp for reasons
of efficiency. Since they have to split genomes (por problemas de memoria, pero tengo q
revisarlo), translocations and duplications that have been split between two contigs are not
detected. Only alignment that covers at least 70% of another is reported as a duplication.
Because Shuffle-LAGAN is not symmetric only duplications in one genome are found.

58 Methods in the State of art for Synteny Block detection

Sibelia

(Minkin et al. 2013) Sibelia, which is prepared only for bacterias, is based on Brujin graph
algorithm and uses LAGAN for aligning synteny blocks. It uses as an input the whole
sequence.

MUMmer

(Kurtz et al. 2004) MUMmer finds local alignments of highly identical sequence, then
aggregates them into one that cover collinear regions. Each groupr is free from rearrange-
ments. MUMer can identify and align genomes with rearrangements. They have (at least) 3
user parameters: length of exact matches, distances between two matches to be aligned, a
parameter to decide if a collinear chain is extracted and processed.

Section C

Sorting permutation problem state of art

Reconstruct the history of evolutionary events can be viewed as a sorting permutation
problem where we can transform the order by evolutionary events operations. Zimao Li and
his colleagues made in 2006 a wide review of different methods of sorting permutation [60].

C.1 Sorting by reversals

The first serious strike for sorting permutations was made by Kececioglu and Sankoff [56].
They developed a method for sorting unsigned permutations by reversals. The method was
based in two conjetures:

• There exists an optimal series of reversals that does not cut stripes other than at their
first or last element.

• There exists an optimal series of reversals that never increases the number of break-
points.

Later on, Bafna and Pevner [10][comprobar 1-Genome Rearrangements and sorting by
reversals] improved it for signed and unsigned permutations. One year later Hannenhalli
and Pevner proved those conjectures [44]. They also develop an exact O(n4) algorithm
to sort permutations by reversals [15] which was later improved by Kaplan, designing an
algorithm in O(n2) [53]. Later on, Bader presented an algorithm in a linear time for signed
permutations [8].

Sorting unsigned permutations by reversals was proved to be NP-hard problem by Caprara
in 1997 [21] and reduced to MAX SNP-hard by Berman and Karpinsky [16]. El-Mabrouk
also studied the problem of sorting permutations by reversals but also included insertions and
deletions as operations. She extended Hannenhalli and Pevzner’s polynomial-time approach

60 Sorting permutation problem state of art

[28] and develop a new algorithm in O(n2) for the sorting signed permutation by reversals
with insertions and deletions problem [35].

C.2 Sorting by transpositions

Inversions, -or reversals-, are not the only operation why biological sequences have evolved
and other methods included this operation in the model. At the beginning, to solve the prob-
lem just using them instead of reversals; and later on combining reversals with transpositions.

Bafna and Pevner first studied transposition in 1998[10]. Walter et al [Walter et al.]
presented a ratio-3 approximation algorithm for computing the unsigned reversal and transpo-
sition distance running in time O(n2). Gu et al proposed a greedy heuristic O(n2) algorithm
for signed permutations [42]. Lin and Xue developed a method for sorting signed permu-
tations by combined operations [61]. Wang and Warnow [Wang et al. 2006] developed a
technique called the inverse of the expected number of breakpoints (IEBP) to estimate the
“true evolutionary distance” [93], which was later on refined with a more accurate method,
the Exact-IEBP [92][Wang 2001].

C.3 Weighted operations and other evolutionary events

Scientist have observed that in practice, transposition occur with about half the frequency of
reversals [19]. This leaded to develop new methods where reversals and transpositions are
weighted.

Eriksen [36] presented PTAS under the restriction that the given permutations are signed
and circular. Dias and Meidanis studied another weighted problem of sorting by fusion,
fission and transposition simultaneously [33]. Bader et al [9], presented a fast algorithm
(heuristic) for the multiple genome rearrangement problem with weighted reversals and
transposition. They did not consider unsigned permutations. Given such weights, the
weighted genome rearrangement problem asks for a sorted sequence of rearrangement
operations such that the sum of the weights of the operations in the sequence is minimal.
Under this criterion, a shortest sequence of operations is not necessarily optimal, unlike all
the methods developed to date. The complexity of a method that combines transposition,
reversal and reverted transposition is still unknown. Hartman and Sharan provided a very
efficient 1.5-approximation algorithm for this case [45].

C.4 DCJ 61

C.4 DCJ

Sophia Yancopoulos proposed DCJ in 2005 [95] and it was extended in [96]. DCJ include
duplications. DCJ approach [42] tries to minimize the number of DCJs required to sort the
graph. Many studies has used this methods for calculate distances between genomes [65].

Feijao and Meidanis proposed an extension of algebraic formalism for rearrangements
that includes linear chromosomes The main difference with DCJ model is that they change
the weight for some operations and they do not consider duplications in their model [37].

Section D

Publications

IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 15, NO. 4, JUNE 2016 343

Computational Synteny Block: A Framework to
Identify Evolutionary Events

Jose A. Arjona-Medina∗ and Oswaldo Trelles

Abstract— Motivation: The identification and accurate descrip-
tion of large genomic rearrangements is crucial for the study
of evolutionary events among species and implicitly defining
breakpoints. Although there is a number of software tools
available to perform this task, they usually either a) require a
collection of pre-computed non-conflicting high-scoring segment
pairs (HSPs) and gene annotations; or b) involve working at
protein level (what excludes non-coding regions); or c) need many
parameters to adjust the software behavior and performance; or
d) imply working with duplications, repeats, and tandem repeats,
which complicates the identification of rearrangements task.
Although there are many programs specialized in the detection
of these repetitions, they are not designed for the identification
of main genomic rearrangements. Methods: The methodology
we envisage starts with the detection of all HSPs by pairwise
genome comparison. The second step involves solving conflicts
generated by fragments that overlap in both sequences (double-
overlapped fragments) to end yielding a collection of gapped
fragments. In the third step, the quality measures (length,
score, identities) of the gapped fragment are refined by using
a modified dynamic programming approach. This collection of
refined gapped fragments represents the input of a recursive
process in which we identify blocks of gapped fragments that
maintain co-localization, regardless of them occurring in cod-
ing or non-coding regions. The identification of repeats is an
important step in the subsequent refinement of these blocks.
This step allows for the separation of repeats and the correct
identification in turn of longer blocks. Finally, groups of repeats,
duplications, inversions and translocations are identified. Results:
The set of algorithms presented in this manuscript is able
to detect and identify blocks of large rearrangements—taking
into account repeats, tandem repeats and duplications—starting
with the simple collection of ungapped local alignments. To the
best of our knowledge, this is the first method to approach
the whole process as a coherent workflow—thus outperforming
current state-of-the-art software tools—and additionally allowing
to classify the type of rearrangement. The results obtained are
an important source of information for breakpoints refinement
and featuring, as well as for the estimation of the Evolutionary
Events frequencies to be used in inter-genome distance proposals,
etc. Data sets and Supplementary Material are available at:
http://bitlab-es.com/gecko-csb/.

Manuscript received April 6, 2016; accepted April 9, 2016. Date of
publication April 20, 2016; date of current version August 12, 2016.
This work was partially supported by the Mr.SymBioMath IAPP (Project
code: 324554), the ‘Plataforma de Recursos Biomoleculares y Bioinformati-
cos (ISCIII-PT13.0001.0012)’, ‘Proyecto de Excelencia Junta de Andalucia
(P10-TIC-6108), the Health Government of Andalucia (PI-0279-2012), and
the RIRAAF network (RD12/0013/0006). Asterisk indicates corresponding
author.∗J. A. Arjona-Medina is with the Advanced Computing Technologies
Unit, RISC Software GmbH, Hagenberg, Upper Austria 4232. (e-mail:
arjona@uma.es; jose_arjona@risc-software.at).

O. Trelles is with the Department of Computer Architecture, University of
Malaga, Campus de Teatinos, Malaga 29071. (e-mail: ortrelles@uma.es).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNB.2016.2554150

Index Terms— Breakpoints, computational synteny blocks,
duplications, repeats, synteny blocks, tandem repeats.

I. INTRODUCTION

EVOLUTIONARY Events (EE)—or large genomic
rearrangements—play a crucial role in the evolution

of species. Evolutionary events-based studies focused on
molecular evolution are aimed at finding series of genomic
rearrangements that transformed a genome into a different
one. To perform this task, other tasks must be conducted
before, ranging from detecting HSPs to grouping them
into synteny blocks (SBs) [1], refining SBs boundaries [2],
searching and refining breakpoints [3], identifying the type of
rearrangement, and establishing a sequence of rearrangements.

A number of current software tools start with anchors
that represent conserved regions, to end with a set of SBs.
Some tools, such as Cassis [3] or Orthocluster [4], use a list
of orthologous genes. On the other hand, tools as Cyntena-
tor [5] represent genes as alphabetic letters and perform a
BLAST-like comparison. Other programs (e.g., MCScan [6] or
i-AdHore 3.0 [7]) combine information on gene position and
protein sequences to perform an all-against-all comparison by
using BLASTP. In all these approaches, the obtained results
depend on annotated information that is not available for non-
coding DNA.

Some alignment tools like MUMmer [8] are able to detect
blocks of rearrangements. Shuffle-LAGAN [9], for example,
uses the glocal alignment algorithm to detect rearrangements,
whereas progressiveMauve [10] uses a recursive approach to
find conserved collinear regions. GR-Aligner [11] can find and
refine breakpoints of rearrangement events. Although these
methods were not designed for identifying SBs, they are able
to find rearrangement events.

All these software tools share a common feature: they need
several parameters and restrictions in order to compute SBs
(i.e., minimum SBs lengths, minimum number of blocks, non-
overlapped SBs, etc.). According to Ghiurcuta and Moret [12],
the definition of SBs does not seem to be strict enough, which
might explain why current tools yield widely different results.
A comparative table on the different methods for computing
SBs has been included in Supplementary Material, Section I.

Repeats, tandem repeats and duplications make difficult
the detection of SBs. Thus, in order to make SBs detec-
tion easier, many of the methods used to calculate SBs—
such as DRIMM-Synteny [13], GRIMM-Synteny [1], or
GRAligner [11]—avoid these events. There are also parameter-
dependent methods, which manage larger blocks in the
presence of repeats by filtering small blocks; for example,

1536-1241 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

344 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 15, NO. 4, JUNE 2016

MUMmer [8] needs a minimum span of block per species
and a maximum gap, whereas progressiveMauve [10] and
GRIMM-Synteny [1] use a recursive approach to remove the
small blocks that break collinearity.

However, a considerable part of genomes are repetitive.
Thus, almost 50% of the genome in humans and 80% in
maize is repetitive DNA [14]. Although repetitions are not that
common in bacteria, they play an important role in regulating
expression patterns, and they can potentially destabilize the
genome [15]. It is also widely known that repetitions drive and
play an interesting role in evolution in many ways [16], [17].

Many programs have been developed to identify repeats.
A 2008 study revealed that there are profound differences
among these different methods [18]. For example, Repeat-
Masker,1 RepeatScout [19], or ReAS use the RepBase data-
base [20] to find repeats and low complexity DNA sequences
in a genome. Recon [21] and PILER [22] use sequence self-
comparison to detect repeats. However, they were not designed
to detect rearrangements.

On this background, we present an automatic and precise
method for identifying computational synteny blocks (CSB),
which are equivalent to synteny blocks. The method takes into
consideration coding, non-coding regions, and repeats.

II. MATERIALS AND METHODS

In this section, the term “tandem repeats” refers to a pattern
of one or more nucleotides that are repeated adjacent to each
other2; and “repeats” are patterns of nucleotides that occur in
multiple copies along the genome.

Our method starts with the collection of HSPs (a.k.a.
ungapped local alignments or fragments). Small evolutionary
events (EE) —in particular indels and duplications— can
produce overlapped HSPs at a short distance from each
other. A number of these HSPs are overlapped in both
sequences. In the second step, these double-overlapped HSPs
are merged into a single gapped fragment. Coarsely speaking,
two fragments combine to form a new gapped fragment char-
acterized by their minimum start-coordinates and maximum
end-coordinates. In this process, tandem repeats are detected.

The precise site where gaps are incorporated into the
gapped fragments is determined by using a modified dynamic
programming approach, with a bounded window). This step
also includes refining the quality measures of the collected
gapped fragments (identity, length, etc.).

In the third step, a recursive method is applied to com-
pute CSBs composed by a collection of fragments that
maintain co-localization in the sequences. Once CSBs are
computed, repeats—group of fragments that overlap in only
one sequence—are identified. This process allows computing
larger CSBs, since repeats spuriously break collinearity in
CSBs. Finally, EEs are identified. Next sections describe the
method in more detail.

A. Detection of HSPs

HSPs are extracted using Gecko [23]. Gecko is an applica-
tion composed of a set of modules organized as a workflow

1http://www.repeatmasker.org
2U.S. National Library of Medicine Medical Subject Headings (MeSH).

Fig. 1. Tandem repeats and repeats detection. This figure represents a scenario
where tandem repeats are detected. (A) shows fragments that overlap both
in X and Y sequences (double overlapped. (B) shows the tandem repeats
that will be reported following the “tandem repeats detection” procedure.
(C) shows the result of the “merging double overlapped” process. The new
fragment is the result of connecting the extreme values of the set of fragments
represented in (A) (dotted lines are shown for reference only). (D) Detection
of repeats. The figure illustrates a set of candidate fragments to conform a
repeat group. The difference between the length of fragment f and the length
of any other fragment is greater than their minimum length. The difference in
length between any fragment (excluding f) is less than their minimum length.
Therefore, all fragments— f fragment excluded—form a group of repeats.

to compute the set of fragments between two biological
sequences. This software has demonstrated its capacity to yield
HSPs of high-quality beating reference software.

However, any other program able to identify ungapped
local alignments can also be used, provided that their out-
put is converted into Gecko output format. The sensitivity
of these programs generally depends on certain parameters
such as the length of the K-mers employed to identify seed
points to accelerate the process, or p -value thresholds. The
resulting HSPs are described as an 8-tuple f = x Star t ,
yStar t , x End , y End , length, strand , score, identi ties
where x Star t , x End , and yStar t , y End represent anchoring
in genome X and Y respectively, and strand could be for-
ward or reverse. Reverse fragments are found by comparing
genome X and the reverse complement of genome Y . Notice
that x End and y End are redundant for ungapped fragments,
but they are necessary for gapped fragments.

B. Merging Double-Overlapped Fragments and
Tandem Repeat Detection

Two fragments that overlap partially or totally in the X and
Y sequence are called “double-overlapped.” They merge into
a single fragment that connects their ends. Formally speaking,
two fragments fi , f j are double-overlapped if

min(fi · x End, f j · x End)

− max(fi · x Star t, f j · x Star t) > 0

min(fi · y End, f j · y End)

− max(fi · yStar t, f j · yStar t) > 0

fi · strand = = f j · strand. (1)

This function is called Overlap(fi , f j). The coordinates of
the new fragment are computed as follow:

fnew · Star t = min(fi · x Star t, f j · x Star t)

fnew · End = max(fi · x End, f j · x End)

fnew · yStar t = min(fi · yStar t, f j · yStar t)

fnew · y End = max(fi · y End, f j · y End). (2)

At the same time that double-overlapped fragments
are merged into a single fragment, tandem repeats
are found because the overlapped section defines a
tandem repeat (see Fig. 1(a)). Formally speaking, given

ARJONA-MEDINA AND TRELLES: COMPUTATIONAL SYNTENY BLOCK: A FRAMEWORK TO IDENTIFY EVOLUTIONARY EVENTS 345

two double-overlapped fragments fi , f j a tandem repeat is
defined by:

ftan · Star t = max(fi · Star t, f j · Star t)

ftan · End = min(fi · End, f j · End). (3)

Noteworthy, this formula is valid both for X and Y sequence
coordinates. Additionally, this formulation is also valid when
a fragment is fully overlapped by the other.

C. Refining Quality Measures of Gapped Fragments

By definition, HSPs are highly conserved fragments
between genome X and Y , but they do not necessarily
represent the best possible alignment between their anchors,
since they do not consider indels. Moreover, the previous
step converts the collection of ungapped HSPs into gapped
fragments, therefore, the score, identi ties, and length must
be recalculated.

1) Dynamic Programing Algorithm for Global Alignment
(Needleman and Wunsch) to Analyze Only a “Subset” of
Solutions: We use the Needleman and Wunsch algorithm [24]
to calculate the best possible alignment for each fragment.
We use a customized dynamic programming approach based
on a limited computational space bounded by the diagonals of
the joined fragments.

The full dynamic programming algorithm described by
Needleman and Wunsch to find the best score with gaps
(and the best alignment can be derived from this finding) has
O(N2) complexity. This complexity means not only CPU time
consumption but also memory allocation for a big matrix that
growths with the length (N × M) of the sequences.

In Gecko-CSB program we use this expensive dynamic pro-
graming algorithm but with a reduction of the computational
space. The rationale is that we apply this procedure only for
fine-tuning the solution. In fact we already know the set of
ungapped fragments and therefore we need only to explore
a partial computational space. Reasons to reduce the space
arise because of the long length of the sequences. Some HSPs
can have more than 1 Mbp, therefore we would need approx.
1 Mbp × 1 Mbp ×si zeO f DataStructure, which is clearly
unaffordable even running in multiprocessors machines.

Therefore, customization is necessary due to the large
computational space defined by the coordinates of the involved
fragments.

2) Length of Gapped Fragments: A fragment is defined by
two subsequences. When a fragment is reported, it usually
has start and end positions in both sequences, which define a
subsequence. The length of the subsequences can be computed
by subtracting end and start positions.

If the fragment is ungapped, the length in both subsequences
is the same. If the fragment is gapped, sequence X length
and sequence Y length might not be the same. In this case,
an alignment between subsequence X and Y is needed in
order to get the length of the fragment. Once the alignment is
performed, both subsequences (which include gaps) will have
the same length. Therefore, the length of the fragment is the
length reported in the alignment including gaps.

Fig. 2. Linearity and collinearity properties. This figure shows the properties
of linearity and collinearity. Two horizontal lines represent the sequences
under comparison or the sequence that meets a given property. The rectan-
gles represent blocks where the strand is not relevant, whereas the arrows
represent blocks in a given orientation. Similar blocks share the same
marker (A, B, or C).

D. Definition of Computational Synteny Blocks

In this section we will start with the definition of com-
putational synteny blocks (CSBs) and some EEs. A CSB
is defined as a set of fragments that conserve strand and
collinearity in both sequences. Notice that this definition pre-
sumes that these fragments are free of internal rearrangements.
At this point a reduced set of N gapped-fragments is available
F = f1, f2, . . . , fN where the i th element of the collection F
is represented by fi . The cardinality of the ordered fragments
in X and Y is contained by OX , and OY respectively.

PX and PY represent the inverse index of OX and OY . For
example, Oi

X represents the order of fPi
x

in the genome X .
Since duplications are allowed, if two or more fragments are
overlapped in X or Y , they will share the same order. In this
case, if fPi and fP j are duplicated in the genome X , then

Oi
X is equal to O j

X . Note that both in OX and OY cases,
Oi ≤ Oi+1.

E. Linearity and Collinearity

This section includes a set of formal definitions describing
different levels of linearity and collinearity between fragments
that are employed to detect CSBs. The function ST (fi) returns
+1 if fi .strand is forward and −1 if fi .strand is reverse.

1) Simple and Complete Linearity: Two fragments fPi

and fP j fulfill SimpleLineari ty (SL) in a sequence if
abs(Oi − O j) is equal to 1. In SL the strand of CSB is not
taken into account. In CompleteLineari ty (C L) CSBs must
have the same strand. Two fragments fPi and fP j satisfy C L
in a sequence if (Oi −ST (fPi)) is equal to (O j −2·ST (fP j)).

2) Simple and Complete Collinearity: Two fragments
fPi and fP j fulfill SimpleCollineari ty (SC) if they sat-
isfy SL in the sequences X and Y , and they fulfill
CompleteCollineari ty (CC) if they satisfy C L in both
sequences. At this point, the linearity and collinearity between
two fragments has been analyzed. However, the relationship
among fragments can involve three or more fragments taken

346 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 15, NO. 4, JUNE 2016

in pairs. The concepts of bi-linearity and bi-collinearity are
described below.

3) Simple and Complete Bi-Linearity: Three fragments,
fPi , fPk and fP j fulfill SimpleBi -Lineari ty (SbL) in a
sequence if they fulfill SL taken in pairs in the sequence:
SbL(i, k, j) = SL(i, k) · SL(k, j). Three fragments, fPi , fPk

and fP j fulfill CompleteBi -Lineari ty (CbL) in a sequence if
they fulfill C L taken in pairs in the sequence: CbL(i, k, j) =
C L(i, k) · C L(k, j)

4) Simple and Complete Bi-Collinearity: Three frag-
ments, fPi , fPk and fP j fulfill SimpleBi -Collineari ty
(SbC) if they fulfill SC taken in pairs. SbC(i, k, j) =
SC(i, k) · SC(k, j). Three fragments, fPi , fPk , and fP j fulfill
CompleteBi -Collineari ty (CbC) if they fulfill CC taken in
pairs. CbC(i, k, j) = CC(i, k) · CC(k, j)

F. Automatic CSB Detection

According to the definitions of linearity and collinearity,
if two fragments belong to the same CSB, then they fulfill
CompleteCollineari ty. During CSB calculation, if two or
more fragments belong to the same CSB, they can be
merged into a new fragment by using the same procedure
MergeC SB f unction described in the step “Merging double-
overlapped fragments.” Since a CSB is represented as a
fragment that connects the heads and tails of the fragments, all
functions available for fragments can also be applied to CSBs.
This process repeats until no new CSB is detected. After the
Merging process, the quality measure of the new CSB must
be recalculated using the same approach as that described in
the section Refining quality measure of gapped HSPs.

The algorithm to calculate CSB can be summarized as
follows:

1: while REPEAT is true do
2: REPEAT = false
3: for fPi ∈ F do
4: if C L(i, i + 1) then
5: mergeC SB(i, i + 1)
6: re f iningQuali tyMeasure(i, i + 1)
7: REPEAT = true
8: end if
9: end for

10: end while

G. Detecting Repeats

Once CSBs are obtained, repeats can be found. In order to
speed the process up, all overlapped CSBs are selected to be
processed in the next step (see Fig. 1(d)). In order to avoid long
fragments in the repeats selection, the following condition was
set: two fragments that are overlapped can be part of a group of
repeats if their length difference is less than the minimum of its
length: abs(fi·length−f j·length)<min(fi·length, f j·length)

Once a group of possible repeats is found, the order of each
fragment in X and Y is recorded in Ox and Oy . Groups of
duplicated CSBs in Y and X are recorded in Dx and Dy ,

respectively. In the Fig. 1(d) Dx values range up to 9 (num-
ber of columns) and Dy values range up to 8 (number of
rows). This information is combined by spreading (i.e., if
the first row is marked as group 1, all columns related to
these fragments will be marked as group 1). At the end of
the process, all fragments of a grid will be assigned to the
same group.

The algorithm to detect these groups is summarized below:

1: Fdup = select All PossibleRepeats(F)
2: for fPi ∈ Fdup do
3: if OverlapX (fPi , fPi+1) then
4: Di

X = Di+1
x = blockX

5: else
6: blockX = blockX + 1
7: end if
8: if OverlapY (fPi , fPi+1) then
9: Di

Y = Di+1
Y = blockY

10: else
11: blockY = blockY + 1
12: end if
13: CombineIn f ormation(DX , DY)
14: end for

H. Identifying Evolutionary Events

In this section a set of rules is defined in order to identify
large EEs. An Inversion is an EE that changes the strand of
a region in a sequence. A transposition is an EE that moves
the region of a sequence from its original position to another
position. Fig. 3 illustrates these EEs.

1) Detecting Inversions: Given a CSB A, the reversion of A
is noted as A. This operator changes the CSB’s strand. Given
three CSBs A, B , and C , B is reverted if and only if A, B, C
fulfill CbC .

2) Detecting Transposition: Given five CSBs A, B, C, D
and E , B is transposed if and only if: A, B, C fulfill CbL in
X (or Y); D, B, E fulfill CbL in Y (or X); A, C fulfill C L
in Y (or X); and D, E fulfill C L in X (or Y).

3) Detecting Reverted Transposition: In the case that
A, B, C, D, E satisfy the rule for transpositions, then B has
undergone a reverted transposition.

4) Detecting Duplications: Since the order of CSBs in X
and Y are stored—excluding the groups of IRs—the CSBs that
share the same order are considered duplications.

III. RESULTS AND DISCUSSION

In this section, we present three different experiments that
were conducted to validate the proposed set of algorithms
(Gecko-CSB) at specific and global level: in the first exper-
iment simple cases were used to dive into the algorithms,
in the second experiment we compare Gecko-CSB against
GRIMM-Syntenty while the third was a massive experiment
that covered aspects such as algorithm performance associated
with closeness in evolution (closely- and remotely-related
genomes). The tests reported in this document were performed

ARJONA-MEDINA AND TRELLES: COMPUTATIONAL SYNTENY BLOCK: A FRAMEWORK TO IDENTIFY EVOLUTIONARY EVENTS 347

Fig. 3. Identification of evolutionary events. This figure shows four different
evolutionary events that are detected by using linearity and collinearity
properties. On the left are shown block positions in the sequences, whereas
a dotplot-like representation is displayed on the right. Similar blocks share
the same marker (A, B , C , D, or E). From top to bottom are represented:
(a) Inversions: Blocks A, B , and C fulfill simple bi-collinearity but not
complete bi-collinearity because block B does not share the same orientation
in both sequences. If block B were reverted (in one sequence), A, B , and C
would fulfill complete bi-collinearity. (b) Transpositions: blocks A, B and C
fulfill Complete Linearity in sequence X . Blocks D, B , and E fulfill Complete
Linearity in Y . Blocks A and C fulfill Complete Linearity in Y , and blocks C
and D fulfill Complete Linearity in sequence X ; (c) Inverted transpositions:
blocks A, C , D, E , and reverted B fulfill the conditions explained in the
section “Transposition”; and finally (d) duplications: in this example, A is
duplicated in sequence Y . Notice that cases C and D are not linear neither
in X nor in Y .

in the Picasso multiprocessor located at the University of
Malaga.

A. Infrastructure

The tests reported in this document were performed in the
Picasso multiprocessor located at the University of Malaga,
Spain.3 We used the same machine in the three experi-
ments to avoid any biases associated with computational
resources. Picasso is composed of shared and distributed-
memory machines with up to 984 nodes. The distributed-
memory part contains 48 nodes, each with two Intel E5–2670
processors with a performance of 160 Gflop/s. The peak
performance of the distributed-memory part is 16 Tflop/s.
Each node or pair of processors has 64 GB of RAM giving
an aggregate memory of 3 TB. Interconnection is achieved
through an Infiniband FDR network at 54.54 Gbit/s.

3http://www.scbi.uma.es/site/

B. Software

We discarded the large set of algorithms available for the
identification of rearrangements because the vast majority are
based on gene annotations or protein information and they
are only able to identify SBs in regions containing genes but
not in non-coding regions. The selected algorithms —which
have a wider scope— were expected to outperform the other
algorithms available. Consequently, we focused on GRIMM-
Synteny and progressiveMauve.

The results from Gecko-CSB were compared against those
reported by GRIMM-Synteny 2.02 [25] and progressive-
Mauve [10]. These software packages were downloaded from
the official websites and installed in the Picasso multiprocessor
following the provided instructions.

GRIMM-Synteny starts with HSPs provided by Gecko
application, although any other software able to identify HSPs
can be used (i.e., Blast-like programs). progressiveMauve
starts with sequences since it can detect HSPs by using its own
method to detect locally collinear blocks (LCBs) [10]. Strictly
speaking, progressiveMauve is used for genome alignment
based on LCBs. However, in this document we define CSBs
as a set of fragments that conserve order and strand in both
CSBs sequences and are free of internal rearrangements. It is
noticeable that under this definition both, LCBs and CSBs are
equivalent to some extent; however, our method admits over-
lapping among CSBs to allow for the detection of repeats and
duplication events, elements avoided by progressiveMauve.

C. Quality of the Results

In this section we explain how we evaluated the quality of
the results yielded by Gecko-CSB versus other applications
using the same (or equivalent) parameters.

The rationale for this evaluation is to compare the cover-
age of the CSBs detected by each algorithm accounted as
the number of positions covered by CSBs, HSPs, or LCBs
(according to the nomenclature used in each software tool)
and the percentage of identities (alignment quality). Coverage
of coding and non-coding regions are reported in additional
columns, since they are not equally relevant. The positions
of coding regions were obtained from NCBI. In Gecko-CSB
we included a further column to show the features of repeats,
which are not detected by the other methods. Certainly, there
must be more sophisticated ways of comparing results, such as
qualifying and weighing matches depending on the closeness
of the sequences under comparison. However, we decided not
to use these methods as they may incorporate noise or biases
in the evaluation.

It is important to observe some details on coverage com-
puting. To compute coverage we map on the corresponding
sequence only the ungapped part of the fragment. As a result,
long blocks could produce lesser coverage because they could
incorporate more gaps in their alignment than other equivalent
blocks. A simple example of coverage in sequence X and Y
for a set of 3 fragments is shown in Fig. 4

D. Test-I: Pairwise Comparison (Simple Use Case)

We start with a simple case termed Test-I to illustrate
algorithm performance in synteny blocks and the detection

348 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 15, NO. 4, JUNE 2016

Fig. 4. Coverage of a fragment. This is an illustrative example to explain
how the coverage of a set of fragments is calculated. (A) In this example
we observe 3 fragments. V cx and V cy represent the coverage vector in the
sequence X and Y . The set of fragments cover the same number of positions
(10) in V cx and V cy . However, since sequence X is shorter in length than
sequence Y , this set of fragments have better coverage in sequence X (83%)
than in sequence Y (76%). (B) An example with 3 fragments where 2 of them
are duplicated.

TABLE I

COMPARATIVE RESULTS OBTAINED FROM GECKO-CSB, PROGRESSIVE-
MAUVE, AND GRIMM-SYNTENY ON TEST-I

of repeats using Mycoplasma leachii PG50 (Accession
code NC-014751.1) and Mycoplasma mycoides subsp. capri
(Accession code NC-015431.1) genome sequences with a
length of 1008951 bp and 1153998 bp, respectively.

progressiveMauve software runs with default parameters.
GRIMM-Synteny runs with the minimum-cluster-size para-
meter set to 1 to allow blocks made of one HSP in order
to get comparable results (Gecko-CSB allows CSB made
of only one HSP). GRIMM-Synteny were performed with
gap threshold parameter set to 0. This parameter specifies
the number of allowed blocks (clusters) between two blocks
that will be merged into a single block. The equivalence in
Gecko-CSB would be 0, since Gecko-CSB does not join CSBs
that do not satisfy CompleteCollineari ty.

To ensure comparability of the methods by the quality
indices (in particular percentage of identity values), we com-
pute these values using our modified version of Needleman
and Wunsch [24] algorithm. Coverage values were computed
as it was explained in Quality of the results.

Table I displays results for Test-I. progressiveMauve reports
LCBs, GRIMM-Synteny SBs and Gecko-CSB reports results

Fig. 5. Identity histogram for HSPs, CSBs, and repeats. This figure shows
the histograms for HSPs versus CSBs (a) and HSPs versus repeats (b) by level
of identity. The X axis represents percentages of identity values, whereas the
Y axis represents normalized frequencies.

for CSBs (column B) after detection of repeats (column C).
As it can be observed in Table I, Gecko-CSB has a better
performance measured as coverage over both sequences and
over both types of regions (coding and non-coding). Since
progressiveMauve and GRIMM-Synteny remove overlapped
segments, they have a lower coverage value.

Coverage obtained in coding regions is greater than that
observed in non-coding regions. The main reason can be
found in the fact that coding regions are better conserved
and therefore it is easier to identify HSPs in those regions.
For instance, when Gecko-CSB finds two blocks in coding
regions separated by regions that do not contain HSPs but
satisfy CompleteCollineari ty, these two CSBs are merged,
covering a greater region of the sequence, but with a collateral
effect: the average identity is smaller (see Table I; column
B+C) than Gecko (A) or progressiveMauve (E).

In order to better understand the identity values (asso-
ciated with quality) obtained for HSPs, CSBs and repeats,
Fig. 5 shows two histograms comparing HSPs versus CSBs
(Fig. 5(a)) and HSP versus repeats (Fig. 5(b)), both distributed
by identity level. In Fig. 5(a) the concentration of CSBs
increases in the range of 90–100% as compared to HSPs.
In the same range but in Fig. 5(b) we can observe, in the
range of 60–70% of identity, a higher concentration of repeats
as compared to HSPs. This explains why once repeats have
been extracted, CSBs identity average is greater than HSPs
identity.

ARJONA-MEDINA AND TRELLES: COMPUTATIONAL SYNTENY BLOCK: A FRAMEWORK TO IDENTIFY EVOLUTIONARY EVENTS 349

TABLE II

COMPARATIVE RESULTS OBTAINED BY GRIMM-SYNTENY
AND GECKO-CSB

Fig. 6. Results of comparisons. This figure shows the different results for
(A) Gecko-CSB result, (B) result from the GRIMM-Synteny, and
(C) a detailed image of overlapped region. In red: Gecko-CSB’s result. In gray:
GRIMM-Synteny’s result.

progressiveMauve and GRIMM-Synteny fragments are in
general longer than Gecko-CSB’s results because they do not
take into account short fragments and remove all overlapped
fragments. Indeed, this short repeats lower average length
value.

E. Test-II. Grimsynteny vs Gecko-CSB

We performed a similar comparison using the dataset used
by GRIMM-Synteny in their original document to verify that
Gecko-CSB can deal also with anchors coming from others
sources. Anchors from Human and Mouse in chromosome 18
were selected as input for the method presented in this work.
Chromosome 18 was chosen due to the variety of evolutionary
events presented in this comparison.

The minimum-cluster size parameter for GRIMM-Synteny
was set to 1 to allow clusters made up of one block. The gap
threshold parameter was set to 0 (the most restrictive).

GRIMM-Synteny performs a GRIMM-Anchors procedure
to filter out anchors with conflicting coordinates. This
process yields a set of unique coordinates (see Table II
column Unique Coords). During GRIMM-Anchor process,
overlapped anchors are extracted. This process prepares the
ground for GRIMM-Synteny to detect fewer long blocks
than Gecko-CSB. However, Gecko-CSB is able to work in
the presence of such overlapped blocks and reports these
repetitions as CSBs or IRs, if any. As a result, the coverage
in both sequences is lower compared to GRIMM-Synteny, the
number of CSB increases and the length average turns six
times smaller.

Overlapped CSBs that break linearity between other CSBs
are much smaller than them. For example, in Fig. 6(c)
we observe two overlapped CSBs (C and C’) that are
breaking linearity between CSBs A and B. The length of
CSB C is around 266 Kbp whereas the length of CSB B
is around 15 Mbp. GRIMM-Synteny reports C and C’ as
repetitions and reports D as a Synteny Block. Gecko-CSB

Fig. 7. Results from all-against-all comparison of 68 mycoplasmas. Closely
related sequences. The X and Y axis represent coverage (as percentages) in
the sequences. Each point represents a comparison. The color and shape of
points represents the average identity in the comparison. This figure only
shows those comparisons with a coverage greater than 75%. On the left (a)
are shown 49 comparisons performed by progressiveMauve, whereas on the
right (b) are shown 86 comparisons performed by Gecko-CSB. Figure (a)
shows a higher concentration of comparisons that cover more than 90% (red
square) in both sequences than in figure (b). Identities in (b) are smaller in
general than (a) as we explained in subsection “Test-I.”

reports A, B, C, and C’ as CSBs. Following the rules for
detecting Evolutionary Events described in section H , C and
C’ are detected as duplications because they share the same
cardinality order in sequence X .

F. Test-III. Comparison of 68 Mycoplasmas

In “Test-III” an all-against-all genome comparison of 68
Mycoplasmas was performed. This test was intended to avoid
bias in the analysis that could arise from selecting two par-
ticular genomes. This large data set was prepared to contain
different levels of orthology between genomes. The informa-
tion needed to construct the data sets is available in the Sup-
plementary Material, Section IV. Gecko-CSB and progressive-
Mauve were performed over the resulting 2.278 comparisons.
Four main groups of comparisons were intuitively separated
based on the coverage obtained: a comparison between two
closely related sequences (more than 75% of coverage in
both sequences), remotely related sequences (between 40%
and 75% of coverage), poorly related (between 40% and 10%
of coverage) and non-related (less than 10%). Fig. 7 shows
the results in Gecko-CSB and progressiveMauve for closely-
related species.

Gecko-CSB detected 81 comparisons with a coverage
greater than 75%, 36 comparisons between 40% and 75%
of coverage, 412 between 40% and 10%, and 1,749 under
10%. progressiveMauve reported 49 with coverage greater
than 75%, 21 between 40% and 75%, 294 between 40%
and 10%, and 1,914 below 10% (see Fig. 8 for a graphic
representation). As it was discussed in Test-I, Gecko-CSB gets
more coverage than progressiveMauve since Gecko-CSB does
not remove any block and can handle overlapped fragments,
which was confirmed in this massive experiment.

Gecko-CSB identified a total of 4,101 groups of repeats in
789 out of 2278 comparisons. These repeats cover up to 15%
of the sequences in some comparisons, but they have in general
less than 80% of identity. More details in Supplementary
Material, section 8b. Fig. 9(a) shows a histogram of the
average length of each group grouped by their identity average.

Repeats can be highly represented in comparisons. Fig. 9(b)
shows a histogram displaying repeats length histogram but

350 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 15, NO. 4, JUNE 2016

Fig. 8. Average length, average percentage of identity, and coverage from all-
against-all comparison of 68 mycoplasmas. Grouped by closely, remote and
poorly related species. The X and Y axis represent coverage (as percentages)
in the sequences. Each point represents a comparison. The color represents the
average identity in the comparison. The shape represents the average length
of the blocks detected. On the left results from Gecko-CSB. On the right
results from progressiveMauve. In the image it can be observed that Gecko-
CSB works better in terms of getting more coverage over the sequences at
the similar level of identity, specially in those comparisons of poorly related
species.

showing the composition according to the number of repeats
within the groups.

G. Locally Collinear Blocks in progressiveMauve vs
Computational Synteny Blocks in Gecko-CSB

progressiveMauve calculates locally collinear blocks (LCB).
A LCB is a subset of local alignments in a set of local multiple
alignments that occur in the same order and orientation in a
pair of genomes, free from internal rearrangements [10].

In Gecko-CSB, a computational synteny block (CSB) is
defined as a set of similar regions (local alignments) that
conserve strand and collinearity in both sequences.

The difference between LCB and CSB definitions is that
local multiple alignments in progressiveMauve are ungapped
whereas similar regions in Gecko-CSB are gapped.

But there is one main difference in the way that LCB are
built. While progressiveMauve is computing anchors, overlap-
ping matches are trimmed. As a result, there is no overlapped

Fig. 9. Histogram of repeats lengths (a) grouped by identity average and (b)
grouped by number of repeats within the groups. These repeats were identified
in 2278 comparisons. Results are grouped by average identity. For example,
the largest amount of groups of repeats appears at 200 of length. According
to identity (a) the set of repeats with a length of 200 bp is made up of 286
groups with a 40% to 60% identity, 359 groups between 70–80% and 122
groups with more than 90% of identity. According to the number of repeats
within the group (b) the set of repeats with a length of 200 bp is made up of
269 groups that have less than 10 repeats, 244 groups that have between 10
and 50 repeats, 102 groups that have between 50 and 100 repeats, and 132
groups that have more than 100 repeats.

LCBs in the process, whereas Gecko-CSB can report over-
lapped CSB (like repeats or duplications). Therefore, LCBs
are a subset of local non-overlapping alignments.

In addition, in the xtit “Recursive anchor search” process,
a heuristic “greedy breakpoint elimination” is performed in
order to optimize the “sum-of-pairs LCB anchoring objective
function”. As a result, progressiveMauve removes LCBs,
decreasing the total number of LCBs in the solution. The
anchoring function has two components, a breakpoint penalty
and the sum of scores for each pair. The sum-of-pairs increases
only if the sum of scores for each pair has a sufficiently
small total score, “favouring the deletion of small LCBs that
interrupt large LCBs”.

Gecko-CSB does not remove any pair from the set of local
alignments (or CSBs in its recursive process), because it would
break its definition. Only repeats are separated from the CSBs
collection to be processed in a following step.

This main difference implies that progressiveMauve has
in average longer fragments than Gecko-CSB. However, in

ARJONA-MEDINA AND TRELLES: COMPUTATIONAL SYNTENY BLOCK: A FRAMEWORK TO IDENTIFY EVOLUTIONARY EVENTS 351

Fig. 10. Gecko-CSB and progressiveMauve. (a) Region from Gecko-CSB.
(b) Same region from progressiveMauve.

TABLE III

BLOCKS A, B , C , AND D COORDINATES IN FIG. 10

some special cases, Gecko-CSB reports longer fragments than
progressiveMauve.

We are going to analyze two kind of cases: CASE A: when
progressiveMauve reports longer fragment than Gecko-CSB
CASE B: when Gecko-CSB reports a fragment longer
than progressiveMauve. Examples are extracted from Test-I,
Mycoplasmas NC-014751 and NC-015431.

1) Case A: Progressivemauve Reports Longer Fragments
Than Gecko-CSB: Fig. 10 shows a region where progressive-
Mauve reports a longer fragment (D) than Gecko-CSB (Frag-
ment A, marked with an oval and fragment B). CSBs A and B
have 6862 bp and 9741 bp of length respectively (see Table III
for more details), and the shorter CSB C has only 622 bp of
length and 60% of identity. This small fragment is removed
by progressiveMauve because fragment D (A joined with B)
improves the score (91%). However, Gecko-CSB does not
merge fragment A with B (like progressiveMauve does) and
detects the CSB C because it is breaking the linearity property.

To test the accuracy of this interpretation, we performed
a database search using the subsequences in X and Y that
CSB c defines. This search was performed by NCBI BLASTn
using low parameters (wordsize 7, match 1, mismatch −1,
gap cost 1 and 2 for existence and extension respectively)
against the NR database. BLAST’s results showed 1390 and
1846 highly similar sequences in X and Y respectively. The
main feature reported for these subsequences were magnesium
ABC transporter ATPase (25% and 3.6%), magnesium translo-
cating P-type ATPase (6.8% and 5.3%), calcium translocating
P-type ATPase (2.5% and 3.3%) or APTase (1.6% in X and
6.1% in Y).

A second search was carried out by megablast exclud-
ing Mycoplasma taxa (wordsize 16, match 1, mismatch −1,
gap cost 1 and 2 for existence and extension respectively).
BLAST’s results showed 11994 and 17126 similar sequences
in X and Y respectively (p -value up to 3.6). Prevalent species

Fig. 11. Gecko-CSB and progressiveMauve. (a) Region from Gecko-CSB.
(b) Same region from progressiveMauve.

TABLE IV

BLOCKS AND REGIONS COORDINATES IN FIG. 11

in the results were Plasmodium (6.7% in X and 3.3% in Y),
Zebrafish (6.7% and 3.9%) and Vitis (6.5% and 4.4%).

A third search was carried out by using SMA3s [26] to
find associations between biological information and CSB C .
We performed the search over UniProt Swiss-Prot database
from EBI. Both sequences were annotated as GO:0000166,
GO:0046872, GO:0016021, P-type (p -value threshold 0.1,
identity percentage cutoffs 90% and 70%, rost parameter 20).

More details can be found in Supplementary Material,
section 5a.

2) Case B: Gecko-CSB Reports Longer Fragments Than
Progressivemauve: However, in some cases Gecko-CSB
can also identify longer fragments as compared to similar
LCBs reported by progressiveMauve. This situation arises
because Gecko-CSB is able to merge fragments that fulfil
CompleteLineari ty. progressiveMauve merges LCB only
when the objective function (for “greedy breakpoint elimina-
tion” heuristic process) improved, which is not the case in this
example.

Since Gecko-CSB is designed to detect and identify evo-
lutionary events, it is able to detect potential SBs which can
explain big evolutionary events. It means that even if the region
is poorly conserved (and that is the reason why other programs
cannot identify them) Gecko-CSB is able to find them.

In Fig. 11 we present an example. Gecko-CSB obtains
a bigger block (A) than progressiveMauve which obtains 3
fragments (B , C , D) separated by two regions (E and F).
Coordinates of blocks and regions are shown in Table IV.

The CSB A covers LCBs B , C , and D, covering as
well regions E and F . These regions are poorly conserved
(30% and 43% of identity) and that is the main reason
why progressiveMauve does not join B , C , and D into a
single LCB. A database search using SMA3s was carried

352 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 15, NO. 4, JUNE 2016

out over the sequences in the region E and F . The results
shown that in the region E , both sequences X and Y share the
same functionality: DNA restriction-modification system, site-
specific DNA-methyltransferase (adenine-specific) activity.

IV. CONCLUSIONS

In this paper we introduce a method named Gecko-
CSB aimed to the automatic, parameters free and robust
CSBs detection. It is able to work in complex environments
(e.g., highly-interspersed short repeats, overlapped fragments,
small fragments). Gecko-CSB results outperform those of
current software tools both in the number and quality of the
detected signals that correspond to evolutionary events.

Most methods start with a collection of particular HSPs,
in some cases setting up some previous requirements such
as non-overlapping HSPs or even more, they start one step
forward using a collection of SBs. Gecko-CSB methodology
starts with simple HSPs or ungapped fragments, one of the
classical outputs from pairwise sequence comparison algo-
rithms.

In this paper, a set of definitions is presented in order
to formalize linearity and collinearity properties in a CSB
framework. These properties are useful not only to detect
CSBs as it is shown in the results section but also to detect and
identify evolutionary events. We would like to propose CSBs
as a basic unit of large evolutionary events detection and the
starting point for breakpoint refinement.

Since a HSP is defined as a maximum ungapped similar
segment shared by the sequences under comparison, it is—
by definition—computationally hard to extend the orthology
beyond their extremities [2]. Some attempts for this extensions
are based on the short fragments shared by the sequences
in the region between two adjacent SBs [3] or using less
strict parameters for the detection of SBs, which can drive to
obtain spurious extensions. We propose to use a more robust
method based on the information stored in sequence databases,
which provide much more information to delineate the borders
of SBs. In this scenario, small blocks and IRs that break
collinearity are essential to determine the appropriate bound-
aries where CSBs extension must be analyzed. In general,
these small blocks are quite important for the determination
of the boundaries of Evolutionary Events, regardless of these
blocks having not been taken into account by state-of-the-art
software. We are working in this refinement with promising
preliminary results.

To validate results, two different applications were used:
progressiveMauve and GRIMM-Synteny. Parameters in those
applications were set to produce comparable results. In all
cases,

– Gecko-CSB obtains more coverage and similar quality.
– Gecko-CSB is designed for dealing with overlapped

HSPs, one of the main drawbacks in current software
tools. Due to the previous capability, Gecko-CSB can
detect and organize IRs.

– Gecko-CSB works in complex environments (i.e., over-
lapped fragments, small fragments, highly repeats frag-
ments) and with all HSPs collections provided by other
programs. It is not necessary to apply any previous

filtering process to clean the input of these troubling
fragments. However, Gecko-CSB is able to incorporate
statistically significant short fragments into CSBs or
report groups of IRs.

– Gecko-CSB is automatic in the sense that it does not
need parameters to detect CSBs or IRs. In our case, all
parameters are internally estimated based on distribu-
tions. Also we use some formulas to suggest values to be
used in the process. Gecko-CSB has also demonstrated
to be a robust method able to deal with genomes related
at different levels of orthology.

Finally, the results provided by Gecko-CSB represent the
starting point for SBs and breakpoints refinement and they
are the last step when addressing the correct reversion of
evolutionary events in order to produce better inter-genome
distances based on the number of rearrangements.

REFERENCES

[1] P. Pevzner and G. Tesler, “Genome rearrangements in mammalian
evolution : Lessons from human and mouse,” Genome Res., vol. 13,
no. 1, pp. 37–45, 2003.

[2] C. Lemaitre, E. Tannier, C. Gautier, and M.-F. Sagot, “Precise detec-
tion of rearrangement breakpoints in mammalian chromosomes,” BMC
Bioinformat., vol. 9, p. 286, 2008.

[3] C. Baudet, C. Lemaitre, Z. Dias, C. Gautier, E. Tannier, and M. F. Sagot,
“Cassis: Detection of genomic rearrangement breakpoints,” Bioinformat-
ics, vol. 26, no. 15, pp. 1897–1898, 2010.

[4] X. Zeng, M. J. Nesbitt, J. Pei, K. Wang, I. a. Vergara, and N. Chen,
“OrthoCluster: A new tool for mining synteny blocks and applications
in comparative genomics,” in Proc. 11th Int. Conf. Extending Database
Technol. (EDBT ’08), pp. 656–667.

[5] C. Rödelsperger and C. Dieterich, “CYNTENATOR: Progressive gene
order alignment of 17 vertebrate genomes,” PLoS ONE, vol. 5, no. 1,
2010.

[6] Y. Wang, H. Tang, J. DeBarry, and X. Tan, “MCScanX: A toolkit for
detection and evolutionary analysis of gene synteny and collinearity,”
Nucleic Acids Res., vol. 40, no. 7, p. e49, Apr. 2012.

[7] S. Proost, J. Fostier, D. De Witte, B. Dhoedt, P. Demeester,
Y. Van De Peer, and K. Vandepoele, “i-ADHoRe 3.0-fast and sensitive
detection of genomic homology in extremely large data sets,” Nucleic
Acids Res., vol. 40, no. 2, 2012.

[8] S. Kurtz, A. Phillippy, A. L. Delcher, M. Smoot, M. Shumway,
C. Antonescu, and S. L. Salzberg, “Versatile and open software for
comparing large genomes,” Genome Biol., vol. 5, no. 2, p. R12, 2004.

[9] M. Brudno, S. Malde, A. Poliakov, C. B. Do, O. Couronne, I. Dubchak,
and S. Batzoglou, “Glocal alignment: Finding rearrangements during
alignment,” Bioinformatics, vol. 19, no. 1, 2003.

[10] A. E. Darling, B. Mau, and N. T. Perna, “Progressivemauve: Multiple
genome alignment with gene gain, loss and rearrangement,” PLoS ONE,
vol. 5, no. 6, 2010.

[11] T. C. Chu, T. Liu, D. T. Lee, G. C. Lee, and A. C. C. Shih, “GR-Aligner:
An algorithm for aligning pairwise genomic sequences containing
rearrangement events,” Bioinformatics, vol. 25, no. 17, pp. 2188–2193,
2009.

[12] C. G. Ghiurcuta and B. M. E. Moret, “Evaluating synteny for improved
comparative studies,” Bioinformatics, vol. 30, pp. 9–18, 2014.

[13] S. Pham and P. Pevzner, “DRIMM-Synteny: Decomposing genomes
into evolutionary conserved segments,” Bioinformatics, vol. 26, no. 20,
pp. 2509–2516, Oct. 2010.

[14] P. SanMiguel, A. Tikhonov, Y. K. Jin, N. Motchoulskaia, D. Zakharov,
A. Melake-Berhan, P. S. Springer, K. J. Edwards, M. Lee, Z. Avramova,
and J. L. Bennetzen, “Nested retrotransposons in the intergenic regions
of the maize genome,” Science, vol. 274, no. 5288, pp. 765–768, 1996.

[15] C. W. Hill, “Large genomic sequence repetitions in bacteria: Lessons
from rRNA operons and Rhs elements,” Res. Microbiol., vol. 150,
no. 9-10, pp. 665–674, 1999.

[16] W. F. Doolittle and C. Sapienza, “Selfish genes, the phenotype paradigm
and genome evolution,” Nature, vol. 284, no. 5757, pp. 601–603, 1980.

[17] H. H. Kazazian, “Mobile elements: Drivers of genome evolution,”
Science, vol. 303, no. 5664, pp. 1626–1632, 2004.

ARJONA-MEDINA AND TRELLES: COMPUTATIONAL SYNTENY BLOCK: A FRAMEWORK TO IDENTIFY EVOLUTIONARY EVENTS 353

[18] S. Saha, S. Bridges, Z. V. Magbanua, and D. G. Peterson, “Empirical
comparison of ab initio repeat finding programs,” Nucleic Acids Res.,
vol. 36, no. 7, pp. 2284–2294, 2008.

[19] A. L. Price, N. C. Jones, and P. a. Pevzner, “De novo identification of
repeat families in large genomes,” Bioinformatics, vol. 21, no. Suppl. 1,
pp. 351–358, 2005.

[20] J. Jurka, V. V. Kapitonov, A. Pavlicek, P. Klonowski, O. Kohany, and
J. Walichiewicz, “Repbase Update, a database of eukaryotic repetitive
elements,” Cytogenet. Genome Res., vol. 110, no. 1–4, pp. 462–467,
2005.

[21] Z. Bao and S. R. Eddy, “Automated de novo identification of repeat
sequence families in sequenced genomes,” Genome Res., vol. 13, no. 1,
pp. 1269–1276, 2003.

[22] R. C. Edgar, “PILER-CR: Fast and accurate identification of CRISPR
repeats,” BMC Bioinformat., vol. 8, p. 18, 2007.

[23] O. Torreno and O. Trelles, “Breaking the computational barriers of
pairwise genome comparison,” BMC Bioinformat., vol. 16, no. 1,
p. 250, 2015.

[24] S. B. Needleman and C. D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins,”
J. Mol. Biol., vol. 48, no. 3, pp. 443–453, Mar. 1970.

[25] G. Tesler, “GRIMM: Genome rearrangements web server,”
Bioinformatics, vol. 18, no. 3, pp. 492–493, 2002.

[26] A. Muñoz-Mérida, E. Viguera, M. G. Claros, O. Trelles, and
A. J. Pérez-Pulido, “Sma3s: A three-step modular annotator for
large sequence datasets,” DNA Res., vol. 21, no. 4, pp. 341–353, 2014.

The Author(s) BMCGenomics 2016, 17(Suppl 8):804
DOI 10.1186/s12864-016-3069-4

RESEARCH Open Access

Refining borders of genome-
rearrangements including repetitions
JA Arjona-Medina1* and O Trelles2

From: 6th SolBio International Conference 2016 (SoIBio-IC & W-2016)
Riviera Maya, Mexico. 22-26 April 2016

Abstract

Background: DNA rearrangement events have been widely studied in comparative genomic for many years. The
importance of these events resides not only in the study about relatedness among different species, but also to
determine the mechanisms behind evolution. Although there are many methods to identify genome-rearrangements
(GR), the refinement of their borders has become a huge challenge. Until now no accepted method exists to achieve
accurate fine-tuning: i.e. the notion of breakpoint (BP) is still an open issue, and despite repeated regions are vital to
understand evolution they are not taken into account in most of the GR detection and refinement methods.

Methods and results: We propose a method to refine the borders of GR including repeated regions. Instead of
removing these repetitions to facilitate computation, we take advantage of them using a consensus alignment
sequence of the repeated region in between two blocks. Using the concept of identity vectors for Synteny Blocks (SB)
and repetitions, a Finite State Machine is designed to detect transition points in the difference between such vectors.
The method does not force the BP to be a region or a point but depends on the alignment transitions within the SBs
and repetitions.

Conclusion: The accurate definition of the borders of SB and repeated genomic regions and consequently the
detection of BP might help to understand the evolutionary model of species. In this manuscript we present a new
proposal for such a refinement. Features of the SBs borders and BPs are different and fit with what is expected. SBs
with more diversity in annotations and BPs short and richer in DNA replication and stress response, which are strongly
linked with rearrangements.

Keywords: Synteny block, Computational synteny block, Breakpoint, Refinement

Background
Large scale genomic rearrangements (LSGR) have been
widely studied due to their implication in the evolution
of the species. The study of rearrangements is strongly
linked with Synteny Blocks (SB) defined as conserved
regions between sequences [1]. The regions between SB
are called breakpoints (BP), and their study might reveal
clues towards evolutionary mechanisms [2, 3]. Both, SB
and BP, have been used for phylogeny distance calculation
[4], ancestral genome reconstruction [5], and others.

*Correspondence: arjona@uma.es
1Advanced Computing Technologies Unit, RISC Software GmbH, 4232
Hagenberg, Upper Austria, Austria
Full list of author information is available at the end of the article

Although there are many methods to identify SBs, they
usually do not refine their borders [3, 6, 7]. Thosemethods
that refine SBs -and therefore BP- they usually focus on
extending the borders of the SB, aiming tomaximize a spe-
cific target function based on the alignment. Additionally,
the lack of a well-accepted definition of SB [8] might be
among the reasons that current tools yield widely different
results. Furthermore, the presence of repeated regions or
small blocks between the SBs increases the complexity of
the detection, one of the main reasons why most methods
do not take into account such repetitions. However, these
repetitions -mostly associated with mobile elements- have
been driving the evolution in many ways [9].
One of the main problems to identify BPs is the unclear

definition. For example, Lemaitre et al. [10] reasoned that

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

The Author(s) BMCGenomics 2016, 17(Suppl 8):804 Page 434 of 462

a BP is not a single “point” but a region between two
SB; while others, for example Chu et al. [11] describe
a method to determine the exact location of a BP at
nucleotide level for inversions and block interchange
events.
A second problem appears when trying to refine the SB

by extending its borders. Current methods try to maxi-
mize the alignment in the region between two SBs, but
boundaries are less conserved. Most of them [12–14],
remove the small blocks or repetitions to simplify the
SB detection. Clearly the resulting BPs might be con-
taminated by small subsequences which actually have a
homologous region in the other sequence. Any analysis
based on these contaminated sequences will be biased by
these small subsequences.
In a recent work [15] we addressed the detection of

blocks of large rearrangements, called Computational
Synteny Blocks, taking into account repetitions. In this
manuscript, we propose a method to refine these detected
CSBs and detect also BPs taking into account small blocks
and any kind of repetitions. Indeed, we use the repeti-
tions alignment to improve the accuracy of the refinement
process. In our model, we contemplate inversions, dupli-
cations and translocations.
Our results show a higher accuracy in terms of percent-

age of identity in refined SBs. Our results also indicate
biological differences between refined SBs and detected
BPs sequences. Sequences in the SBs borders are richer in
DNA damage whereas sequences in the detected BPs are
richer in DNA replication and stress response, strongly
linked to evolution [16].

Methods
Our method starts with the collection of Computational
Synteny Blocks (CSB) - similar to SB associated with cod-
ing regions, and CSB also covering non-coding regions.
The CSBs are calculated using GECKO-CSB [15] (sec-
ond step in Fig. 1). Applying linearity and collinearity
functions (described in [15]) over the CSB provided by
GECKO-CSBwe identify LSGR (so far duplications, inver-
sions and translocations). The next step — which is
reported in this document- is the precise refinement of the
borders of CSBs involved in every detected LSGR (third
step in Fig. 1). This refinement is applied to the sequences
involved in calculation (namely sequences X and Y) in
two independent and separable processes. After that we
combine the results to get the final refinement. Figure 1
describes the workflow step by step.
Once an LSGR is detected, we take the two CSBs

involved. The repetitions in between them, if any, are also
take into account. Then we define a region of interest
(ROI) running from the tail of one CSB to the head of the
other (step 4 in Fig. 1). This ROI includes an arbitrary off-
set to force the overlapping between CSBs and repetitions

Fig. 1Workflow from fasta sequences to refined blocks and BP
detection

(see Figs. 2 and 12). A virtual CSB (CSBV) and virtual
repetitions are created by extending the borders in order
to cover the ROI. Afterwards, these CSBV and virtual
repetitions are aligned using a fast customized imple-
mentation of the Needleman and Wunsch [17] global
alignment method. The main idea of this process is to
force overlapped regions to study the alignments within
the ROI.
At this point an identity vector for every aligned CSBV

and all repetitions is computed (step 5 in Fig. 1. See
Additional file 1 for more details). Then, a “difference
vector” (Vdiff) is calculated (step 7). If we are working with
only two CSBV , the Vdiff contains the normalized abso-
lute difference between the two identity vectors. If besides
that we are working with repetitions, we compute theVdiff
taking into account a consensus identity vector from the
repetitions (step 6).
The rationale behind the method is the following: The

Vdiff vector contains high values when identity vectors
are different. In those regions where values are similar in
both identity vectors, the values contained in Vdiff will be
low. At some point we will observe a transition between
high and low values along the Vdiff vector. These transi-
tions will define the BP. A finite-state machine (FSM) was
designed to detect these transitions (step 8). At the end
of the process, CSB borders are refined based on the BPs
detected by the FSM. Themethod does not force the BP to
be a region or a point. This will depend on the transition’s
features.

The Author(s) BMCGenomics 2016, 17(Suppl 8):804 Page 435 of 462

Fig. 2 Illustrative representation of the Region of Interest (ROI). a ROI region in an inversion event (CSB B). Coordinates are calculated following the
Eqs. 1 (b) Virtual CSBs and repetitions. Virtual CSBs are calculated using the Eqs. 2 (c) Same representation but including identity vectors and vector
difference graphs

Detection of CSBs repetitions and large-scale genomic
rearrangements
CSBs and repetitions are detected using Gecko-CSB [15],
an extension of Gecko [18] . This software has demon-
strated its capacity to yield HSPs of high-quality beating
reference software. In [15] we presented a set of for-
mal definitions describing different levels of linearity and
collinearity between CSBs. Using these definitions, a set
of rules was defined to identify LSGR in single chromo-
some species, such a inversions, translocations, reverted
translocations and duplications. Once a LSGR is detected,
we perform our refiningmethod over those CSBs involved
in the LSGR.
After the detection of a LSGR two CSBs (namely A and

B) are selected. Optionally, if collinearity between CSB A
and CSB B is interrupted by a set of repeats, the repeats
will be included in the selection as well. Repeats can be
separated in two groups. Those repeats whose coordinates
in the sequence X overlap with CSBs A and B are grouped
in a collection named repeats-X. In the collection repeats-
Y are the equivalents regarding sequence Y.

Refining CSBs
At this point the method splits in two branches. The
refinement in the sequence X and Y are complementary
and independent. In this document we will describe the
refinement for the sequence X branch. The sequence Y
branch is the same, but interchanging X by Y.

Calculating the region of interest
The CSBs and repeats define a ROI (see Eq. 5, Figs. 2
and 12). Since our method is focused on finding transi-
tions between CSBs and repetitions, we introduce an offset

parameter, which ensures overlapping between the end
of CSBs and the beginning of virtual CSBs and the vir-
tual repetitions, guaranteeing that transitions are present.
In the worst case, the method will have offset number of
nucleotides in both CSBs that share similarity and there-
fore, they can be aligned with a high value of identity. In
other words, the offset parameter stabilises the beginning
and the end of the signal (More details in “FSM thresholds
selection” in the Additional file 1). The ROI is defined as
follows:

ROIxStart = min(AxEnd,BxStart ,RepeatsxStart) − offset
ROIxEnd = max(AxEnd,BxStart ,RepeatsxEnd) + offset
ROIyStart = min(AyEnd,ByStart ,Repeats.yStart) − offset
ROIyEnd = max(AyEnd,ByEnd,RepeatsyEnd) + offset

(1)

After calculating the ROI, new CSBs named virtual
CSBs (CSBV) are created using the ROI XStart and XEnd
coordinates. This means that all CSBV s will start and end
at the same point. In this step we are extending or trim-
ming the old CSBs concerning ROI start and end points.
New CSBV s’ Y coordinates will be calculated depending
on how much we have trimmed or extended the coor-
dinates in X regarding the old CSB. The equations that
describe this process are the following:

CSBVxStart = ROIxStart
CSBVxEnd = ROIxEnd

αL = CSBxStart − CSBVxStart

αR = CSBVxEnd − CSBVxEnd

CSBVyStart = CSByStart − αL

CSBVyEnd = CSByEnd + αR

(2)

The Author(s) BMCGenomics 2016, 17(Suppl 8):804 Page 436 of 462

Fig. 3 Finite State Machine to detect transitions. This FSM has six states. The first three states (1–3) are to calculate the BP’s start coordinate, and the
last three states (4–6) to calculate the BP’s end coordinate. Changes from one state to another will depend on vector difference values (x in the
figure) and thresholds U1 and U2

Notice that α takes negative values when trimming and
positive when extending. New CSBV s are aligned using a
Needledman and Wunsch implementation.

Calculating identity vectors
After the alignment of CSBV s, identity vectors (IV) are
created for every CSBV . All IV s have the same length
and they represent the percentage of identity that a cer-
tain region of length W has in the alignment. We take
a window of length W to calculate that percentage of
identity.
First we create a binary vector (VB) which represents

matches in the alignment. VB has the length of the
alignment. Since VB takes into account gaps, its length

can be different from one CSBV to another. By using
a window of length W, we can compute the percent-
age of identity at any point in VB. As long as we are
going to compare IV from different CSBV s, identity val-
ues from those points in the alignment that represent a
gap in sequence X are not stored. This way, all identity
vectors from different CSBV s will have the same length,
ROIlength.
Low values in parameter W produce a noisy iden-

tity vector corresponding with high frequency changes
of identity. On the contrary, high values in parameter W
smooth the noise and produce a low frequency signal. The
selection of a proper W value is not possible as it might
change depending on the CSBV involved. We could also

Fig. 4 a Full comparison of HUB-1 against SK76. Main diagonal represents that both subspecies are quite similar. Small points represent repetitions,
with a notorious one (an inversion) present upper zone of the image (circle) (b) Zoomed display of the marked region in 4a. Three CSBs are going to
be extended in this example. Repetitions are represented in a different colour

The Author(s) BMCGenomics 2016, 17(Suppl 8):804 Page 437 of 462

Table 1 CSB Coordinates before and after the refinement process

XStart YStart XEnd YEnd Str Length % �X % �Y % ident

CSB1

Before 711,591 710,528 747,965 746,902 f 36,379 99.69 %

After 711,591 710,528 748,001 746,940 f 36,413 0.1 % 0.1 % 99.72 %

CSB2

Before 749,573 761,860 762,895 748,534 r 13,348 99.37 %

After 749,564 761,853 762,933 748,505 r 13,349 0.35 % 0.17 % 99.59 %

CSB3

Before 764,581 763,521 780,474 779,414 f 15,895 99.70 %

After 764,494 763,439 780.474 779.414 f 15,976 0.55 % 0.52 % 99.69 %

be interested on changes that happen at different frequen-
cies. Therefore, instead of choosing a fixedW value, which
would mean changes at only one frequency, we build a
vector containing all frequencies as follows:

IV (x) =
N∑

i=0
AiIi(x) (3)

where Ai is the weight of the identity vector at a certain
frequency

N∑

i=0
Ai = 1 (4)

And the Identity vector at a certain frequency is calculated
as follows:

Ii(x) = 1
2N + 1

x+N∑

j=x−N
VB(j) (5)

In this model, N defines the maximum window to
compute the percentage of identity and also defines
the start and end positions where the values of the
vector can be used. From 0 to 2N + 1 and from
2N + 1 − ROIlength to ROIlength the IV is uncompleted.
Therefore, N cannot be as long as we want. It should
be at least lesser than OFFSET. In practice we have
observed that a value of 50 is enough to get good
results.

Finally, since identity vectors are going to be compared,
they must to be normalized.

Calculating consensus identity vector
In the case that a group of repetitions are detected, we
use the information of the consensus sequence to improve
accuracy of the refinement method.
After repeats have been aligned and the VBs have

been computed, a Sum Match Vector (VSM) is calculated
by adding all VBs vectors. This vector has a length of
ROIlength, so only positions which are not representing
a gap are taken into account -as we did in the previous
section. Then, we calculate the percentage of repeats that
cover one specific position in the VSM. To calculate the
Consensus Identity Vector (VCI), only positions that com-
ply with a given threshold are set to 1, and 0 otherwise. In
this implementation the threshold was set to 25 %. This
new vector is named Consensus Binary Vector. After this
process, we calculate the VCI by processing the Consensus
Binary Vector as we already described in the previous
section.

Vector difference
In order to detect transitions which delimitate the BP,
we compute the absolute difference between the CSBV s
identity vector. CSBV s are extracted from CSBs accord-
ing to the ROI, using the OFFSET to ensure that similar
regions are represented in CSBV s. As a result, the iden-
tity vectors for the CSBV -A have a high value at the

Table 2 Repeated region coordinates

ID Sequence Start End Length Description Enzyme

1.x hyorhinis HUB-1 748,012 749,513 1,501 tnp Transposase

2.x hyorhinis HUB-1 762,953 764,494 1,541 insK Integrase core domain
protein

1.y hyorhinis SK76 746,988 748,493 1,505 tra Transposase for insertion
sequence element IS6290

2.y hyorhinis SK76 761,936 763,425 1,489 insK Mobile element protein

The Author(s) BMCGenomics 2016, 17(Suppl 8):804 Page 438 of 462

Table 3 Breakpoint coordinates

ID Sequence Ref seq Start End Length

1.1a M. hyorhinis HUB-1 NC-014448.1 748,001 748,012 11

1.2a M. hyorhinis HUB-1 NC-014448.1 749,513 749,564 51

2.1a M. hyorhinis SK76 NC-019552.1 746,940 746,988 48

2.2a M. hyorhinis SK76 NC-019552.1 748,493 748,505 12

3.1a M. hyorhinis HUB-1 NC-014448.1 762,933 762,953 20

3.2a M. hyorhinis HUB-1 NC-014448.1 764,494 764,539 45

4.1a M. hyorhinis SK76 NC-019552.1 761,853 761,936 83

4.2a M. hyorhinis SK76 NC-019552.1 763,425 763,439 14

beginning and low value at the end. On the contrary,
the identity vectors for the CSBV -B have a low value at
the beginning and high value at the end. This is the rea-
son why the vector difference will start and end with
high values. If repetitions are detected, then the dif-
ference vector will have high values in the middle as
well.
Anyways, transitions will be found in between these

high values (see Fig. 2).

Detecting transition points
To detect transitions a Finite-State Machine (FSM) was
designed. Figure 3 shows the design. Basically, the FSM
detects the coordinates where the vector difference value
was the last time at a certain threshold (U1) before
reaching the second threshold (U2). As a result, the
selected region defined by the coordinates is the tran-
sition between high and low values along the vector
difference.
We associate these transitions as a candidate for a BP.

After this process, the refined SB can be trimmed or
extended. The threshold selection is discussed in the next
section.

Results
Simple case
We will use a simple case to illustrate the algorithm
behaviour in the SB borders-refinement method using M.
hyorhinis HUB-1 (Accession code NC-014448.1) and M.

hyorhinis SK76 (Accession code NC-019552.1) genome
sequences with a length of 839,615 bp and 836,897 bp,
respectively.
Figure 4a shows the full comparison of HUB-1 against

SK76. Figure 4b shows a particular area where a LSGR (an
inversion) is presented, before the refinement.
Table 1 shows the coordinates of the CSBs involved

in the inversion before and after the refinement pro-
cess, where X represents M. hyorhinis HUB-1 and Y
correspond to M. hyorhinis SK76. Str. column represents
the strand of the Y sequence, forward or reverse. The
percentage of extension in X and Y sequence is shown in
�X and �Y columns.
The percentage of identities has increased a bit due to

the extension (the refined CSBs are a bit longer). Notice
that in CSB2 the refine process has extend the YStart coor-
dinate making the CSBs 7 nucleotides shorter. On the
other hand, in the opposite border (yEnd) it has extended
29 nucleotides.
Four regions have been detected as repeated sequences.

A database search (Uniprot bacteria at ftp://ftp.ebi.ac.uk)
using SMA3s [19] was carried out. Results and sequence
features are shown in Table 2.
And the BPs are shown in the Table 3.
In this case the method has found 8 BPs. Due to rep-

etitions that the method detects between two CSBs, two
BPs are detected in each sequence. For each BP found,
we have performed a database search using Uniprot and
NCBI non-redundant with no results. No annotation was
found.

Comparing with CASSIS software
We have processed the CSBs detected by GECKO-CSB
using CASSIS [12] in order to refine them. Since CASSIS
cannot handle repetitions and following the recommenda-
tions from its article, we have masked all the repetitions in
both sequences using RepeatMasker [20] (search Engine
was abblast) and we did not include the repetitions in
the input file. Data set and results can be found in the
Additional file 1.
Results from CASSIS are widely different than those

obtained by our method because, among other reasons,
they do not take into account repetitions. Our method

Table 4 CASSIS software breakpoint coordinates

ID Sequence Start End length Descript. Enzyme

1b M. hyorhinis HUB-1 747,965 749,573 1,608 tnp Integrase core
domain protein

2b 762,895 764,581 1,686 insK Integrase core
domain protein

3b M. hyorhinis SK76 710,797 797,477 86,680 polC DNA polymerase III
PolC-type

4b 712,895 797,477 84,582 nanE ManNAc-6-P
epimerase

The Author(s) BMCGenomics 2016, 17(Suppl 8):804 Page 439 of 462

Fig. 5 Progressive distribution of Breakpoint length (bps)

detects 2 short BPs where CASSIS detects a big one.
Indeed, BP 3b and 4b (SK76 sequence) cover the region
contained by CSBs 1, 2 and 3. This result is incomprehen-
sible because it implies that the SBs desapear, creating a
huge BP of size around 85 Kbps, instead of these 3 SBs.
BP 1b has a length of 1,608 bps. We have performed

a BLAST [21] search using the sequence of BP 1b with
default parameters. The sequence has been found sev-
eral times in different sub species of hyorhinis with
high values of identity and coverage, which point-out
that this sequence is a part of a conserved repetition
(see BLAST Report-BreakPoint-1b in Additional file 1).

An additionally BLAST search was carried out using
sequences from BP 2a with similar results.
We have performed a database search using SMA3s over

the BP detected by CASSIS. Results are shown in Table 4
(description and enzyme columns).

Testing the method with a 68mycoplasmas dataset
For the next test, a collection of 68 Mycoplasmas was
used. This test was performed with the aim to avoid
bias in the analysis that a selection of two particular
genomes could introduce. The genome collection and
their gene bank annotations are available at http://bitlab-

Fig. 6 Frequency distribution of Breakpoint length

The Author(s) BMCGenomics 2016, 17(Suppl 8):804 Page 440 of 462

Fig. 7 Results of blast search, mapping and annotation process with blast2GO for BP and PRASB sequences

es.com/gecko/. For the biological analysis we have per-
formed SMA3s [19] over the sequences to find annota-
tions using the Uniprot bacteria database (ftp://ftp.ebi.
ac.uk). Additionally blast2GO [22] was used to carry
out a second annotation process using blastx and the
non-redundant protein database filtered by Bacteria
taxa.
We run first GECKO [18] over the resulting 2,278 com-

parisons following by GECKO-CSB [15]. After that, the
refinement process was carried out giving the refined
collection of CSBs as a result.
Our method refined 2,213 CSBs, 829 were trimmed

after the refining process and 1,384 were extended.
Around 70 % of the BPs detected are sized below 100 bps,
95 % below 300 bps (see Fig. 5). The BP detection was
limited in the implementation at a size of 5000 bps to avoid
spurious long BPs. As it can be observed in Fig. 6, the
frequency of the length tends to zero at length of around
400 bps.

To analyse the results from a biological point of view,
BPs sequences were extracted. The sequences of the pro-
portional region of the adjacent Synteny Block (PRASB) of
each BP were also extracted according with the BP length
(the length of the PRASB sequence has the same length of
the BP sequence, see Fig. 12). The purpose was to find bio-
logical differences by comparing results from annotations
in BP and PRASB sequences. The sequences were com-
pared against the NCBI non-redundant protein database,
filtered by Bacteria taxa. After that, the sequences were
mapped and annotated using blast2GO [22].
The number of sequences with annotation was higher

in BPs (32 %) than in PRASBs (26 %). For more details,
see Fig. 7. We also analysed the percentage of annota-
tions by level of coverage that cover the CSBs in the
comparison from which the BPs were detected. We found
that at a lower level of coverage (meaning non related
species), more sequences were annotated, especially in
BPs sequences (27 % vs 17 %, see Fig. 8).

Fig. 8 Percentage of annotated sequences in BP and PRASB by percentage of coverage in the comparisons in which the sequences were extracted
from

The Author(s) BMCGenomics 2016, 17(Suppl 8):804 Page 441 of 462

Fig. 9 Results from Blast2GO for biological process in annotations of BP and PRASB sequences. Percentages are over the total amount of annotations

Regarding the content of the annotation, we found sev-
eral differences in the biological process and molecular
function categories. Figure 9 shows a summary of the
biological process category with the most significant dif-
ferences between BPs sequences and PRASBs sequences.
SOS response, DNA integration or metabolic process
were more present in PRASB sequences. Proteolysis,
response to heat, protein folding, DNA topological change
and DNA replication were found in more proportion in
BP sequences. Full reports are available as Additional
file.
We also performed another database search, which was

carried out using SMA3s [19] against the UNIPROT
database. The results showed strong differences between
annotations in BPs and PRASBs sequences. Figure 10
shows the UNIPROT keyword categories for Biological

process. Stress response and DNA replication are more
present in BP sequences. On the other hand, Glycolysis,
Calvin cycle and DNA damage are significantly more
present in the PRASB than in BP sequences.
Figure 11 shows the UNIPROT pathways. Carbohydrate

degradation is by far more represented in PRASB
sequences and Purine metabolism is more present in BP
sequences. Full reports are available as Additional file.
The method we present in this manuscript detects two

BPs when refining SBs, one at each border (tail or head) of
the SB, instead of considering the whole region between
these SBs as one large BP. Therefore, after the refining
process we have two BPs and one region in between
(gap), as it can be observed in the Fig. 12. The sequences
corresponding with this region in between the BPs were
extracted to be analysed.

Fig. 10 Results of Uniprot keyword categories for biological process in annotations of BP and PRASB sequences. Percentages are over the total
amount of annotations

The Author(s) BMCGenomics 2016, 17(Suppl 8):804 Page 442 of 462

Fig. 11 Results of Uniprot pathways in annotations of BP and PRASB sequences. Percentages are over the total amount of annotations

Around 30 % of the gap regions in between two break-
points are shorter than 100 bps of length, 88 % below
1,000 bps.
In order to analyse biological differences between BPs

and the gap between two BPs once SBs borders have been
refined, we have extracted the sequences corresponding
with the gap regions between BPs.
A SMA3s search was carried out over BPs sequences

and the gap sequences using the Uniprot database. The
main difference according with these results is at the bio-
logical process (Fig. 13). DNA replication, Stress response
and Purine salvage were found more often in the gap
whereas transport, DNA damage and DNA excision were
more present in the BP sequences.

Discussion
The break point definition
A SB is defined as a relation between two conserved
regions in the sequence of two different species, in terms

of homology or similarity. A BP is usually known as the
region in between two SBs that have suffered a rearrange-
ment due to a LSGR. Many studies support that LSGR
do not happen randomly but follow an unknown model.
Some regions of the sequence seem to be more fragile or
predispose to suffer a large-scale LSGR [2]. Indeed these
BPs can be reused [3, 23] and the BP reuse rate is strongly
linked with the resolution in which SB are detected [24].
Therefore, if a BP depends on the “fragility” of

the specific regions in the sequence then it should
not be defined as a relation between two specific
regions of two sequences (as SB is defined). Although
so far a comparison method is needed to detect
them.
Currentmethods based on sequence comparison, detect

SBs by joining or chaining High Score Segment Pairs,
and when they refine their borders, they try to expand
the SB borders by maximizing a target score function.
This means that the BP region will be a region without

Fig. 12 CSBs before and after the refinement. At the end of the refinement process, we detect BPs. We also extract PRASB and GAP sequences to
analyse accuracy of the method. PRASB and BP have the same length

The Author(s) BMCGenomics 2016, 17(Suppl 8):804 Page 443 of 462

Fig. 13 Results of UniProt keyword categories for biological process in annotations of BP and gap sequences. Percentages are over the total amount
of annotations

similarity. However, following the previous reasoning
about BP definition, it implies that BPs regions do not
have to be necessarily regions with almost no similarity.
Two species could share the same BP and therefore, the
sequences would have some level of similarity. We think
that when refining SBs, they can be trimmed as well as
expanded after the refinement process.

Threshold selection in the finite state machine
Our method bases the BP detection on transition points
in the differences of the percentage of identities. We
have analysed the behaviour of the identity vector along
SBs. We have found that coding regions and non-
coding regions have different levels of identity, which can
be explained because of different evolutionary level of
pressure. But we also have found that in many cases there

is a perceptible transition that could be detectable using a
FSM (see Fig. 14). We think that something similar might
happen between SBs and BPs, a detectable transition that
could determine the BP region.
To identify these transitions we have designed a FSM

which uses two thresholds. In the current version of the
implementation of the method, which we have described
in this document, thresholds are set to 80 and 20
respectively. The selection of the parameter values was
made empirically. (see “FSM thresholds selection” in the
Additional file 1 for more details).
We analysed the identity percentage of SBs and BPs

at different length and have found a strong correlation
between SB and BP levels of identity percentage (see
Fig. 15). In general BPs have less identity percentage
than SB.

Fig. 14 Real case of SB identity vector. In dotted lines codding regions for sequence X. SB extracted from NC-014751.1 (sequence X) vs NC-015431.1
(Sequence Y) comparison. XStart : 92,877, YStart : 115,660, XEnd : 98,983, YEnd : 121,755

The Author(s) BMCGenomics 2016, 17(Suppl 8):804 Page 444 of 462

Fig. 15 Percentages of identities in SB (axis x) and BP (axis y) regions. a all pairs of SBs and BPs. b only BPs with length between 0 and 100. c length
between 100 and 500. d length between 500 and 1,000

Conclusions
We have developed a method to refine the borders of
CSBs taking into account repetitions and using them to
improve the accuracy of the refinement. The method is
not based on maximizing any target function, but studies
the alignments to refine and uses a finite-state machine to
find transition points in the alignment. These transition
points set an accurate refinement of the involved blocks.
Due to the method’s features, BPs are detected as regions
or as points, depending on the specific case. It also takes
into account the repeated regions, so between two CSBs
it can give 4 breakpoints, 2 for each sequence, demarcat-
ing start/end of one block and end/start of the region in
between.
Several analysis were carried out in order to find bio-

logical differences between BPs, SBs borders and gap
regions.
The results showed that there are biological differ-

ences between BPs sequences and the PRASB sequences.
BPs sequences are biologically richer than PRASB. Both

searches using Uniprot and NCBI databases gave more
results in BPs sequences than the PRASB sequences.
However, PRASB showed more diversity in annotations
than those obtained for BPs.
Our experiments show that there may to be a correla-

tion between the number of sequences annotated in BPs
and PRASB and the relatedness of the species from which
those sequences were extracted.
We have also found that there are differences between

what we consider as BPs and the region in between
the BPs, whereas other methods just consider the whole
region as BP.
Our method needs two thresholds to detect the

transition points in the difference vector in which
the BP is defined. Thresholds pick up the abrupt
changes in the signal. These thresholds are fixed in
this version of the method, however, we will work
on a dynamic configuration of the threshold based
on SB similarity that might produce more accurate
results.

The Author(s) BMCGenomics 2016, 17(Suppl 8):804 Page 445 of 462

Additional file

Additional file 1: Supplementary material. (PDF 2796 kb)

Acknowledgements
Oscar Torreño Tirado, Michael Krieger and Paul Heinzlreiter for their valuable
comments and review.

Declarations
This article has been published as part of BMC Genomics Volume 17
Supplement 8: Selected articles from the Sixth International Conference of the
Iberoamerican Society for Bioinformatics on Bioinformatics and
Computational Biology for Innovative Genomics. The full contents of the
supplement are available online at https://bmcgenomics.biomedcentral.com/
articles/supplements/volume-17-supplement-8.

Funding
This work has been partially supported by ISCIII, projects: PT13.001.012 and
RD12.013.006) and the EU Mr.SBM project, code 324554. The latter EU project
funds the publication fees of this work.

Availability of data andmaterials
The datasets, software, additional files and results can be found at http://www.
bitlab-es.com/gecko at subsection GECKO-CSB. The EBI Uniprot Bacteria
database used in this work is available at ftp://ftp.ebi.ac.uk.

Authors’ contributions
JAM contributed in the conception of the work and software development.
OT supervised the work and provided ideas. All authors contributed to the
manuscript’s preparation. Both authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Author details
1Advanced Computing Technologies Unit, RISC Software GmbH, 4232
Hagenberg, Upper Austria, Austria. 2Department of Computer Architecture,
University of Malaga, Campus de Teatinos, 29071 Malaga, Spain.

Published: 25 October 2016

References
1. Nadeau JH, Taylor Ba. Lengths of chromosomal segments conserved

since divergence of man and mouse. Proc Natl Acad Sci U S A.
1984;81(February):814–8. doi:10.1073/pnas.81.3.814.

2. Bailey Ja, Baertsch R, Kent WJ, Haussler D, Eichler EE. Hotspots of
mammalian chromosomal evolution. Genome Biol. 2004;5(4):23.
doi:10.1186/gb-2004-5-4-r23.

3. Pevzner P, Tesler G. Genome Rearrangements in Mammalian Evolution:
Lessons From Human and Mouse. Genome Res. 2003;13(1):37–45.
doi:10.1101/gr.757503.

4. Blanchette M, Bourque G, Sankoff D. Breakpoint Phylogenies. Genome
Inform Ser Workshop Genome Inform. 1997;8:25–34.

5. Alekseyev M, Pevzner P. Breakpoint graphs and ancestral genome
reconstructions. Genome Res. 2009;2000:943–57.
doi:10.1101/gr.082784.108.2.

6. Darling AE, Mau B, Perna NT. Progressivemauve: Multiple genome
alignment with gene gain, loss and rearrangement. PLoS ONE. 2010;5(6).
doi:10.1371/journal.pone.0011147.

7. Donthu R, Lewin HA, Larkin DM. SyntenyTracker: a tool for defining
homologous synteny blocks using radiation hybrid maps and
whole-genome sequence. BMC Res Notes. 2009;2(1):148.
doi:10.1186/1756-0500-2-148.

8. Ghiurcuta CG, Moret BME. Evaluating synteny for improved comparative
studies. Bioinformatics. 2014;30:9–18. doi:10.1093/bioinformatics/btu259.

9. Kazazian HH. Mobile elements: drivers of genome evolution. Science
(New York). 2004;303(5664):1626–1632. doi:10.1126/science.1089670.

10. Lemaitre C, Tannier E, Gautier C, Sagot MF. Precise detection of
rearrangement breakpoints in mammalian chromosomes. BMC
Bioinforma. 2008;9:286. doi:10.1186/1471-2105-9-286.

11. Chu TC, Liu T, Lee DT, Lee GC, Shih ACC. GR-Aligner: An algorithm for
aligning pairwise genomic sequences containing rearrangement events.
Bioinformatics. 2009;25(17):2188–193. doi:10.1093/bioinformatics/btp372.

12. Baudet C, Lemaitre C, Dias Z, Gautier C, Tannier E, Sagot MF. Cassis:
Detection of genomic rearrangement breakpoints. Bioinformatics.
2010;26(15):1897–1898. doi:10.1093/bioinformatics/btq301.

13. Brudno M, Malde S, Poliakov A, Do CB, Couronne O, Dubchak I,
Batzoglou S. Glocal alignment: Finding rearrangements during alignment.
Bioinformatics. 2003;19(1). doi:10.1093/bioinformatics/btg1005.

14. Darling AE, Mau B, Blattner FR, Perna NT. GRIL: Genome rearrangement
and inversion locator. Bioinformatics. 2004;20(1):122–4.
doi:10.1093/bioinformatics/btg378.

15. Arjona-Medina JA, Trelles O. Computational Synteny Block: A Framework
to Identify Evolutionary Events. IEEE Trans NanoBioscience. 2016;15(4):
1–11. doi:10.1109/TNB.2016.2554150.

16. Rocha EPC, Matic I, Taddei F. Over-representation of repeats in stress
response genes: a strategy to increase versatility under stressful
conditions? Nucleic Acids Res. 2002;30(9):1886–94.

17. Needleman SB, Wunsch CD. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. J Mol Biol.
1970;48(3):443–53.

18. Torreno O, Trelles O. Breaking the computational barriers of pairwise
genome comparison. BMC Bioinforma. 2015;16(1):250.
doi:10.1186/s12859-015-0679-9.

19. Muñoz-Mérida A, Viguera E, Claros MG, Trelles O, Pérez-Pulido AJ. Sma3s:
A Three-Step Modular Annotator for Large Sequence Datasets. DNA
research: an international journal for rapid publication of reports on genes
and genomes (February); 2014. p. 1–13. doi:10.1093/dnares/dsu001.

20. Smith CD, Edgar RC, Yandell MD, Smith DR, Celniker SE, Myers EW,
Karpen GH. Improved repeat identification and masking in Dipterans.
Gene. 2007;389(1):1–9. doi:10.1016/j.gene.2006.09.011.

21. Bedell J, Korf I, Yandell M. Blast. Bioinformatics; 2003, p. 312.
22. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M.

Blast2GO: A universal tool for annotation, visualization and analysis in
functional genomics research. Bioinformatics. 2005;21(18):3674–676.
doi:10.1093/bioinformatics/bti610.

23. Sankoff D, Trinh P. Chromosomal Breakpoint Reuse in Genome Sequence
Rearrangement. J Comput Biol. 2005;12(6):812–21.
doi:10.1089/cmb.2005.12.812.

24. Attie O, Darling AE, Yancopoulos S. The rise and fall of breakpoint reuse
depending on genome resolution. BMC Bioinforma. 2011;12(Suppl 9):1.
doi:10.1186/1471-2105-12-S9-S1.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

The Author(s) BMCGenomics 2016, 17(Suppl 8):802
DOI 10.1186/s12864-016-3063-x

RESEARCH Open Access

Computational workflow for the
fine-grained analysis of metagenomic samples
Esteban Pérez-Wohlfeil1, Jose A. Arjona-Medina2, Oscar Torreno1, Eugenia Ulzurrun1 and Oswaldo Trelles1*

From 6th SolBio International Conference 2016 (SoIBio-IC&W-2016)
Riviera Maya, Mexico. 22-26 April 2016

Abstract

Background: The field of metagenomics, defined as the direct genetic analysis of uncultured samples of genomes
contained within an environmental sample, is gaining increasing popularity. The aim of studies of metagenomics is to
determine the species present in an environmental community and identify changes in the abundance of species
under different conditions. Current metagenomic analysis software faces bottlenecks due to the high computational
load required to analyze complex samples.

Results: A computational open-source workflow has been developed for the detailed analysis of metagenomes. This
workflow provides new tools and datafile specifications that facilitate the identification of differences in abundance of
reads assigned to taxa (mapping), enables the detection of reads of low-abundance bacteria (producing evidence of
their presence), provides new concepts for filtering spurious matches, etc. Innovative visualization ideas for improved
display of metagenomic diversity are also proposed to better understand how reads are mapped to taxa. Illustrative
examples are provided based on the study of two collections of metagenomes from faecal microbial communities of
adult female monozygotic and dizygotic twin pairs concordant for leanness or obesity and their mothers.

Conclusions: The proposed workflow provides an open environment that offers the opportunity to perform the
mapping process using different reference databases. Additionally, this workflow shows the specifications of the
mapping process and datafile formats to facilitate the development of new plugins for further post-processing. This
open and extensible platform has been designed with the aim of enabling in-depth analysis of metagenomic samples
and better understanding of the underlying biological processes.

Keywords: Metagenome analysis, Differential abundance, Annotational mapping, Mapping over specific regions,
Open platform

Background
The purpose of metagenomics is to identify the species
present in an environment. Different types of studies
can be performed based on metagenomics. Some exam-
ples include the analysis of changes in the presence
of species in a given environmental sample and the
use of phylogenetic analysis to follow up the spread or
determine the origin of a species. A large number of
tools are emerging in the form of stand-alone programs

*Correspondence: ots@ac.uma.es
1Department of Computer Architecture, University of Málaga, Boulevard Louis
Pasteur 35, Málaga, Spain
Full list of author information is available at the end of the article

(e.g. MEGAN [1]), interoperable Web services (e.g. MG-
RAST [2]) or tools accessible through the Internet (e.g.
EBI Metagenomics [3]).
MEGAN performs taxonomic analyses of a

metagenome by mapping reads to different taxa based
on BLAST [4] search results and the NCBI taxonomy. To
perform this task, the program runs the lowest common
ancestor (LCA) algorithm to classify input reads. Most
metagenomic tools are constructed following a workflow
scheme offering distinct stages of data processing. In
this line, the open-source EBI Metagenomic workflow
is split into two branches following the quality control
step. The first branch performs taxonomic classification

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

The Author(s) BMCGenomics 2016, 17(Suppl 8):802 Page 352 of 462

based on 16S rRNA, whereas the second branch performs
functional analysis based on protein-coding sequences.
Unannotated reads are kept out of the pipeline. How-
ever, these reads should be taken into account for whole
metagenomic analysis in order to improve the accuracy of
taxonomic classification and better understand the roles
of species in environmental samples.
The number of comparative metagenomic tools is the

key point of the metagenomic RAST (MG-RAST) plat-
form. MG-RAST builds clusters of proteins at a given
percentage of identity level using QIIME [5]. Once built,
the longest sequence of each cluster is subject to simi-
larity using sBLAT, an implementation of the BLAT [6]
algorithm. MG-RAST also uses the NCBI taxonomy for
taxonomic classification. Functional profiles are available
through comparison against data sources that provide
hierarchical information. Abundance profiles are themain
output for displaying information on datasets. The MG-
RAST annotation pipeline does not generally provide a
single annotation for each submitted fragment of DNA.
Steps in the pipeline map a read to multiple annotations
and vice versa. Data privacy is one of the concerns of
the scientists using this tool. Firstly, they are reluctant to
upload their unpublished and/or confidential data to a
public website. Secondly, the priority of analysis requests
to the website is subject to the level of confidentiality
of input data (with lower priority and therefore longer
waiting times for private data).
Recently, a new DNA sequence analysis workflow called

META-pipe [7] has been developed to find novel com-
mercially exploitable enzymes from marine microbial
communities. META-pipe uses tools such as MetaGe-
neAnnotator (MGA) [8] and Protein BLAST to identify
sequences found in the UniProtKB database. MGA is a
new version of MetaGene [9] where a prophage gene
model is offered in addition to bacterial and archaeal mod-
els. MGA uses di-codon frequencies estimated by the GC
content of an input sequence to map genes using regres-
sion models. In addition, MGA offers an approach for
the analysis of ribosomal binding sites (RBSs) to detect
specific patterns of ribosomal sequences in species. How-
ever, due to their tendency to undergo highly degenerative
changes, RBSs are particularly difficult to identify [10].
In the line of pipelines used to facilitate the comparative
analysis of high throughput sequencing, MOCAT [11] is
a modular tool for processing raw sequence reads pro-
duced by the Illumina technology [12]. The main steps in
MOCAT are 1) read trimming and filtering 2) read assem-
bly, 3) gene prediction and 4) estimation of taxonomic
abundance profiles.
The fine-grainedmetagenomic analysis workflow devel-

oped by our group can operate over a user-defined col-
lection of genomes -thus accelerating the computational
process- and with the advantages of being able to map

reads over unannotated regions of genomes. Our software
provides different mapping methods and different map-
ping alternatives apart from the best read-genome match-
ing. In addition, it provides information about the quality
of mapping and about differences between mapping
options. Unlike the methods currently available, which
deduce that a species is not present in a sample when
its abundance is low (in number of reads), the proposed
method can detect low-abundance species by finding
reads mapping to particular specific regions of genomes.
In addition, the developed workflow is an open plat-
form composed of an expandable set of separate modules
that use well-defined format datafiles. This enables the
easy on-demand incorporation of new processing tools.
Along with low-abundance species support, other tools
have been included to verify the correctness of taxonomic
assignation and extrapolate DNA sequencing data to gene
expression levels.

System andmethods
System and requirements
The designed workflow (see Fig. 1) includes all the
needed steps for data processing. The quality control
step can be performed using SeqTrimNext [13] for the
case of 454-pyrosequencing [14] reads, whereas Trimmo-
matic [15] can be used for Illumina reads. These programs
are available in our workflow implementation under our
Galaxy [16] instance. With regards to the sequence com-
parison algorithm, we suggest to use the GECKO [17]
package to accelerate the process. Since several metage-
nomic packages for 454-pyrosequencing reads are based
on the matches provided by a BLAST run, the developed
workflow offers a parser to translate BLAST’s output,
and therefore the same strategy (parsing) can be used
when other sequence comparison software is employed.
In addition, the sequence comparison tool SHRiMP [18]
is included along with a parser that is also available and
described in the Additional file 1.
In the line to offer a broad scope of the presented soft-

ware, the proposed workflow can handle sequences of
different length obtained with different sequencing tech-
nologies (e.g. SOLiD [19], Illumina, 454-Pyrosequencing).
For instance, in the case of colour-space reads these can be
compared using SHRiMP, which natively supports colour-
space reads. The proposedmethod focuses in the compar-
ison and mapping procedures, while the pre-processing
steps can be carried out with common publicly available
software.
The workflow operates over a user-defined collection

of genomes. This database might as well be a custom
selection of genomes which hold particular interest, a pre-
selection of the most common species for the type of
metagenome analysis, or even a complete database such
as GenBank [20].

The Author(s) BMCGenomics 2016, 17(Suppl 8):802 Page 353 of 462

Fig. 1 The Workflow diagram. Top: Quality control layer and input files. Center: Comparison software layer. Bottom: Mapping kernel (GMAP), which
provides open-source datafile definitions and enables many on-demand post-processing experiments (Right)

The workflow is specialized in matching (reads-species
mapping) and post-processing procedures, which require
the following input: (1) Sequence comparison files, (2)
taxonomic description of the reference dataset, and (3)
annotation files for the genomes (optional, only needed
for post-processing).
(1) Sequence comparison files: the workflow has been

designed so that it is compatible with any sequence com-
parison software (i.e. BLAST family, FASTA family, pro-
prietary software, etc). The default comparison software
used in this workflows is GECKO, however, the user can
employ other packages. To include other comparison soft-
ware a format conversion program would be needed. A
parsing conversion system for BLAST is already included
in the workflow. The parsing module converts sequence
comparison files to a format composed of headers (read-
genome tuples) followed by rows, where each row repre-
sents a fragment for the tuple. Fragments belonging to a
read-genome match are defined by a 12-tuple:

t12n,k =(k, score, identities, length, similarity, igaps, egaps,
strand, rStart, rEnd, gStart, gEnd)

Where k is the k − th fragment reported by the read
n (see Additional file 1 for further reading). The fields

rStart, rEnd, gStart, gEnd represent the anchoring posi-
tions in the read r and genome g. Reversed fragments are
found by comparing the read with the reverse comple-
ment of genome g. Notice that rEnd and gEnd are redun-
dant for ungapped fragments, but necessary for gapped
fragments.
(2) A taxonomic description file allows the customiza-

tion of hierarchical relationships between organisms in
the reference database as assigning strain relationships
between species or separating strains that belong to a
common ancestor. Such file can be generated automat-
ically using a module of the workflow and/or can be
manually built to insert customized relationships between
species. The format of the file generated is a text file
including a 5-tuple per line, each tuple being a new
genome:

t5n,m =(n,m, genome accession number, genome name,
length)

Where n and m are the specie and subspecie id’s. These
can be used to set up custom boundaries. For further
details, please see “Taxonomy files” in the Additional
file 1).
(3) Annotation files are used to carry out all coding

region-related computations in the post-processing phase.

The Author(s) BMCGenomics 2016, 17(Suppl 8):802 Page 354 of 462

Therefore, these files are optional and should be included
if annotation post-processing modules are to be used.
As in the case of comparison software, a parsing sys-
tem is implemented; e.g. a parsing system for GenBank’s
annotation files has been included in our workflow.

Extension of ungapped HSPs
Comparative analysis of metagenomes is an expensive
computational process that involves comparing a large set
of DNA fragments against an enormous database of can-
didate sequences (genes, proteins or genomes). It should
be noticed that, by definition, bacteria in the metagenome
are uncultured species and the sequences in the databases
that already exist are not –most likely– the correspond-
ing to the species in the metagenome. Even some large
mutations (inversions, deletions, etc) can happen regu-
larly. Therefore a more flexible matching is proposed,
which differs from an assembly bymapping in which there
are quite close representatives of the sequenced bacteria.
Thereby we included the option of using a custom glo-

cal [21] alignment, which yields longer fragments and
larger evolutionary gaps. This method generally improves
mapping results, as global alignment methods are less
accurate when identifying species.
Once local alignments are calculated (using GECKO,

BLAST or any other similar program), fragments are
extended by joining those that are close enough accord-
ing to a given maximum-gap parameter. This is done by
calculating the Needleman-Wunsch matrix between the
start and the end of the matching read within the genome
region with a customized implementation.
Furthermore, glocal alignment can be performed by

combining the local alignments produced by alignment
tools such as BLAST or GECKO with the provided cus-
tom glocal alignment. All parameters can be user-defined,
thus providing data processing flexibility. Table 1 shows
an example of candidate fragments that are extended to
conform a glocal alignment.

New score and expected value calculation
The extension of fragments requires the re-calculation of
fragment scores to identify the best match out of a list of
candidates during the mapping process. The properties of
the extended fragment, namely length –of bases–, num-
ber of identities and inserted gaps stand for the raw score.
The raw score has to be normalized in order to obtain the
expected value of a reported fragment. This is performed
using K and Lambda parameters using a similar approach
to that of the BLAST family. K and Lambda parameter are
calculated as described in [22].
To compute the raw score of the extended fragment

produced by our custom glocal alignment we apply a tra-
ditional affine scoring model (with open and extension
gap penalties), as shown in the following formula:

RS = I ∗ Mr + (L − (Gi + Ge) − I)
∗ Mp + Gi ∗ Pi + Ge ∗ Pe

(1)

Where RS stands for “Raw Score”, I for the total number
of identities in the fragment, Mr for the match score, L
for the total length of the fragment in base pairs, Gi for
the total number of open gaps in the fragment, Ge for the
total number of extension gaps in the fragment,Mp for the
mismatch penalty, Pi for the penalty of an open gap and Pe
for the penalty of an extension gap.

Mapping
Themapping module (GMAP) process offers a three-level
mapping option that not only discovers highly abundant
species that hide others in terms of abundance due to
high similarity or uncertainty in the alignment, but to also
obtain quality distance measurements between the best 3
candidates for every match. The top three candidates are
selected based on identity and coverage thresholds and
expected values. Moreover, users can perform different
mappings by restraining subsets of reads using different
thresholds.

Table 1 Before-and-after extension example of a read with two candidate fragments to be joined

Before extension of local or ungapped alignments

029701.102903— NC_004663.1 — Bacteroides thetaiotaomicron 897405

N SCORE IDEN LEN SIM IGAPS EGAPS STRA R1 R2 G1 G2

1 - 134 145 84 0 0 Plus\Plus 1 133 1631420 1631563

2 - 94 104 80 0 0 Plus\Plus 147 249 1631564 1631666

After extension (“glocal-like” alignment)

029701.102903— NC_004663.1 — Bacteroides thetaiotaomicron 897405

1 - 224 248 90 1 2 Plus\Plus 2 249 1631420 1631665

In the top, the table before extension. Fragments (1) and (2) are separated by a relatively small gap of 14 base pairs (The ending read coordinate R2 of (1) is 14 base pairs away
from R1 in (2)). These fragments represent an example of candidate fragments. The after subtable (bottom) displays the resulting extended fragment and shows a longer
alignment with still high similarity and a low number of gaps (one opening gap and two extension gaps). The score is calculated afterwards (See “New score and expected
value calculation”).

The Author(s) BMCGenomics 2016, 17(Suppl 8):802 Page 355 of 462

In a scenario with a highly abundant organism, further
analysis can be performed by only considering certain
genomes using certain options e.g. to observe differences
and extract statistical indicators of close candidates.

About the mapping decision
Every read yields a list of reported fragments to which the
following algorithm is applied.

1. Filtering step: A filtering step allows the researcher to
consider only a subset of reported fragments,
enabling a levelling up mapping method. If a
fragment does not reach pre-filtering thresholds, it
will be discarded. Such filtering allows a two phases
pre-filtering:

(a) Coverage threshold phase: The length of the
match divided by the length of the read.

(b) Identity threshold phase: The number of
identities in the match divided by the length
of the match.

2. Repeat this step for 3-option mapping and, if
fragments are still active: Select the fragment with
the smallest expected value and if it is lower than the
maximum allowed expected value. This fragment is
included in the mapping file as first, second or third
candidate depending on the number of options
chosen and the genome is inactivated for the next
option iteration.

3. If no more fragments are still active or none of them
exceeds the thresholds, the read is decided with either
no mapping option or up to 3 mapping options.

See “Mapping decision and fragments” in the Additional
file 1 for more information.

Results and discussion
Rather than developing a monolithic application with
graphical interfaces, we opted for a simple pipelining
procedure in which new software modules can be used
to exploit results. To facilitate user interaction, a com-
plete web-based interface has been developed based on
Galaxy workflow manager, which enables users to easily
run their analyses in both a local instance or in dedicated
servers. In addition, a User Guide [23] is available. Regard-
ing software modules, all specifications about input and
result file formats are shown, facilitating the use of third-
party software, such as common graphical libraries and
spreadsheets.
The results given by our workflow software are illus-

trated by an experiment where two collections of 6
metagenome samples each were extracted from fae-
cal microbial communities of adult female monozygotic
and dizygotic twin pairs concordant for leanness or

obesity and their mothers [24]. Raw data (i.e. .sff files)
were obtained by 454-pyrosequencing, and inherent arte-
facts or low-quality sequences were further filtered and
removed using Replicates [25] software and SeqTrimNext
(See “Filtering and trimming parameters” in the Addi-
tional file 1 for used parameters). The average size of
the read collection ranged from 172 bp to 237 bp after
quality control and sequence trimming. The total num-
ber of sequences was 2,724,867 for lean metagenomes
and 2,972,697 for obese ones. For testing purposes, in
this technically-oriented paper we opted to design a syn-
thetic case-control study of two metagenomes by joining
samples from lean and obese individuals.

Reads-abundance and taxonomy classification of reads
The analysis of the species present in metagenomic sam-
ples enables taxonomic classification based on abundance
of mapped reads. Information about the species present in
metagenomes and variations across a collection of species
is yielded by GMAP in Comma Separated Value (csv) for-
mat files that can be edited using common spreadsheet
software (see Fig. 2a).
Abundance data are primarily used to determine the

species that are present in a metagenomic sample and
can be exploited in comparative studies on the over- or
under-abundance of species in different samples. How-
ever, abundance data does not provide information on the
quality and certainty of mapping. This lack of reliabil-
ity can be partially compensated by using the n-mapping
method.

Three-options mapping analysis Our software has the
ability to perform the mapping of reads through a
multiple-level strategy. After the best read-genome map-
ping value is used, the used fragment is inactivated and the
genomes belonging to different strains of the same species
are optionally inactivated, and the process is repeated.
This way, we get the second, third and subsequent best
read-genome mapping values. A long separation between
the mapping options provides stronger evidence support-
ing the validation of the mapping procedure.
When comparing 3-mapping options, the detection of

peaks in second or third options means that a particular
species is repeatedly the second or third candidate (see
Fig. 2b). These peaks suggest that strong similarities exist
between a specific pair of species and careful examination
is required since the accuracy of mapping is not certain.
For instance, it would be interesting to study if the alpha-
betical order of the BLAST output for sequences with
the same expected value is affecting the mapping. These
observations can be supported by the analysis of map-
ping precision (see Fig. 2c), which considers the closest
reads given a distance parameter and shows the separa-
tion in mapping length, the number of identities, or any

The Author(s) BMCGenomics 2016, 17(Suppl 8):802 Page 356 of 462

(a)

(b)

(c)

(d)

Fig. 2 Three-options mapping analysis. Some data from GMAP-based mapping analysis. a Abundance plot for the averaged Lean (blue) and Obese
(orange) metagenomes of the most read-abundance genomes. The plot depicts total mapped reads per specie in the two averaged metagenomes.
b Three-option abundance by organism. In blue, total first option abundance, (number of reads assigned). In red and green, the number of times an
organism was the second and third best candidate for a read. Bacteria with red or green peaks reveal that another organism is probably hiding them
(regarding abundance) and there is not a direct consensus. c Total reads assigned in log10 scale per species as best candidate (first option, blue) and
from that total, the number of reads that had two very similar candidates (defined as a distance in terms of identity, length and coverage) from the
second best candidate (in red). d An exhaustive-one-vs-all user-defined analysis where a bacterium is compared against all species in the database.
The peak in the plot (near the middle) is the analyzed genome, Ruminococcus obeum ATCC 29,174. This particular scenario depicts a comparison of
the target genome against all species by length and abundance. In blue, the percentage of reads that were mapped as second candidate when the
best candidate was the target genome. In orange, the average length of such mapped reads

other chosen parameter between the assigned read and its
second best candidate. Additionally, this separation shows
the extent of differences between first and second candi-
dates, and therefore is another indicator of the quality of
mapping.

In addition, the 3-mapping approach allows to assess the
mapping certainty at both reads and species level; at read
level by comparing fragments quality indicators of partic-
ular genomes against the rest (see Fig. 2d), and at species
level by comparing the abundance levels of the different

The Author(s) BMCGenomics 2016, 17(Suppl 8):802 Page 357 of 462

options for the particular genomes. For example, for all
reads mapped over a given genome, information about the
identity and coverage level of the second and third map-
ping option would provide information about the quality
or certainty of the first option.
On the other hand, in a joint analysis of the Fig. 2b and c,

no peaks in second or third options, along with a larger
separation gap on mapping precision analysis suggest that
the accuracy of mapping is high, which reduces the ran-
dom assignment of reads to genomes and, therefore, the
results obtained are more reliable.
Figure 2c displays the number of reads assigned to each

species and, in relation to each assignation, the times the
second option was almost as good as the first (namely,
“shared” reads). The fact that the blue and red lines of two
species are close to each other suggests that mapping is
not accurate and careful examination is required.

Fine-grained tuning and closer examination In a sce-
nario where a specific species has been the second
option a higher number of times compared to the first
option, as discussed in the previous Section, the mapping
should be exhaustively analyzed and compared with other
species. Such analysis would provide more certainty of
the presence of a low-abundance genome by checking the
properties of its matches, and would enable contrasting
the variances in the matches between a high-abundance
genome and its best second option. Moreover, it is pos-
sible to perform a one vs. one, one vs. some, or, some
vs. some comparative analysis of the target species. This
type of analysis can be performed based on any of the
properties of the mapped reads, such as length, similar-
ity, coverage, or any user-defined properties. This infor-
mation is particularly useful when the first and second
mapping options identify different species (in some cases,
remotely-related species).
Figure 2d illustrates how a number of reads map to very

similar sequence regions shared by different species (due
to high similarity at genome level –i.e. conserved genes).
For example, the mentioned Figure displays the second
mapping option of the reads that were mapped as first
solution to the Ruminococcus obeum ATCC 29,174. The
blue peak in the middle of the plot stands for almost
25 % of the reads assigned to Ruminococcus as first
option and to Dorea longicatena DSM 13,814 as second
option, which evidences strong similarities in several areas
of the two sequences. Additionally, the orange peak at
the right side suggests a longer alignment in the second
option –Ruminococcus gnavus AGR2154–, thus requiring
in-depth analysis of such reads.

Statistical significance of variations between samples
The presented software can provide statistical data on a
number of aspects or characteristics, such as the Z-score

test to detect significant variations in the abundance of
species in different experimental conditions; or to con-
trast the significance of the variation at a species level
between samples calculating the p-values. An interest-
ing example is case-control studies in which differences
in reads abundance along genomes can be identified. Z-
scores provide accurate information on the significance
of such differences (see “Statistical Significance” in the
Additional file 1 for more information).

Genome-specific experiments and quality assessment
Reads mapping to specific regions of genomes Besides
the proximity measures provided by three-option map-
ping, there is another important aspect concerning the
provision of evidence about the presence of species with
low-abundance of reads in the metagenome. The main
idea is to find regions in a particular organism that do not
exist or do not share similarity at all with other organisms
present in the collection of genomes. To accomplish this,
N − 1 comparisons between the reference genome and
the N genomes contained in the collection are performed
using GECKO. This process yields the detected regions
and the assigned reads that have been mapped to these
regions.
The extracted reads mapped to these regions provide

strong evidence on the presence of low-abundance species
in the metagenomic sample, since the mapped read does
not fit over other genomes (see “Reads mapping to spe-
cific regions of genomes” in Additional file 1 for more
information).

Differential abundance in annotated regions of
genomes Another useful tool is the comparison plot of
abundance of annotated regions (potential coding regions
that could change abundance values in different samples).
This assay is conducted on a particular genome by only
considering the reads mapped to annotated regions of
the genome and comparing abundance between different
samples in the same way as RNA-seq transcriptome
expression analysis is performed. Differences in the abun-
dance of reads mapped to annotated regions –when sam-
pling genomic DNA– might be related to environmental
changes. This hypothesis is based on the experimental
resemblance of the differential expression plot of anno-
tated regions when two samples whose environmental
conditions change are compared. Figure 3a suggests
that some annotated regions are being over- or under-
represented, thus suggesting that abundance in annotated
regions may be related to variations in the samples.

Genome profiling of mapped reads A genomic pro-
file of mapped reads is the accumulated number of
reads mapping to a given position within the genome.
Accumulated histograms of abundance of reads provide

The Author(s) BMCGenomics 2016, 17(Suppl 8):802 Page 358 of 462

(a) (b)

(c)

(d)

Fig. 3 Genome-specific experiments. Some of the results oriented at a genome-specific-level. a DNA-seq differential expression plot. Each point
represents an annotated region for a particular genome. In the x-axis and y-axis, the percentage of reads that are mapped to each annotated region
divided by the total mapped reads. b Accumulated reads mapped onto each position of the genome smoothed using a window of size 10000. In
the x-axis, the genome bases from 1 to a portion of its length. In the y-axis, absolute accumulated number of reads mapped. c This plot shows how
proteins found by searching with annotated (Left) and non annotated (Right) reads accumulate along similarity and length. The annotated search
depicts higher length and similarity matches, resembling Sanders curve (reference in the main text), whereas non-annotated search shows mostly
non significant matches. d Annotation mapping. This plot shows reads mapped to a particular genome distributed by annotation properties. The
three groups are plotted in different colours and shapes, namely a orange crosses for unannotated reads, b yellow crosses for semi-annotated reads
and c purple points for fully-annotated reads. The background grey area represents the accumulation of reads for the whole mapped metagenome
in logarithmic scale; thus, darker areas represent higher accumulation

The Author(s) BMCGenomics 2016, 17(Suppl 8):802 Page 359 of 462

information about the number of reads at region level, and
therefore about variations in such accumulation (in case-
control experiments). In principle, when working with
genome sequencing, a more or less flat profile would be
expected, as opposed to transcriptomics sequence data.
The genomic profile helps detect highly active regions or
different number of copies in such regions. This visual-
ization tool (see Fig. 3b) shows how reads are distributed
in a particular species and whether the assigned reads are
present along the whole genome or only in the most active
areas. Another possibility offered by this tool is that it
helps the user decide whether to perform or not a pre-
assembly of the reads mapped to a specific genome to
support the connections found between reads.

Extensive and further verification We propose that the
distribution of fragments based on the comparison of
reads versus genomes is now divided into two different
distributions, as seen in Fig. 3c. Additional verification
was performed by representing the matching values for
reads falling into annotated and unannotated regions.
This is obtained by blasting the set of annotated and
unannotated reads mapped to a given genome against a
database of proteins –such as swissprot [26]. As expected,
different distributions are obtained, which evidences the
suitability of using different thresholds. This affirmation is
supported by the different levels of sequence conservation
in annotated and unannotated regions.

Mapping over annotated regions of genomes Annota-
tion mapping is another example of in-depth analysis of a
specific genome and, in particular, of low abundance ones.
Our workflow uses all the reads assigned to a genome
and divides them into three groups: (1) No annotations, in
the sense that the annotation files obtained did not con-
tain any annotation at the position where the read was
mapped; (2) Semi-annotations, when a part of the mapped
read contains annotations, and (3) Full annotations, when
the whole read contains an annotation.
These three groups are plotted onto the whole mapped

metagenome distribution (see Fig. 3d). The background
grey area represents the accumulation of reads for the
whole mapped metagenome in logarithmic scale; darker
areas represent higher accumulations. The identity-length
distribution of reads for all fragments (with any filtering)
is provided by GECKO and can be partially obtained from
data evidencing significant alignments yielded by other
programs (BLAST) (which can be tuned to also report
random distribution). The rationale of this result comes
from the experiments of Sanders et al. [27] and Rost [28]
that significance is related to the tail of the distributions.
Therefore, displaying mapping values on the grey area
distribution provides first-glance information about the
accuracy of mapping.

Comparison with other metagenomic tools
In order to prove that the results of the proposedworkflow
are consistent with those of other metagenomic analysis
software suites (in terms of abundance in the taxonomic
classification), the following test was performed using
results from BLASTn based on metagenomic samples
from faecal microbial communities. Both, our workflow
(MG workflow) and MEGAN were executed using the
same input from BLASTn and ran with default parameters
(available in the Additional file 1 under “Comparison with
MEGAN”).
On comparison of the lean metagenome based on

MEGAN, the abundance plot (see Fig. 4a) shows simi-
lar results to ours. Standard deviation from ratios (using
abundance data provided by MEGAN and by our work-
flow) was 0.25, which is not significant enough to identify
relevant variations (see Fig. 4b, c). However, whereas the
analysis of a metagenome using MEGAN can last nearly
an hour, our MG workflow took about six minutes to ana-
lyze the obese metagenome and five minutes for the lean
one when the comparison had been done with BLAST.
With GECKO, the duration of the process was further
reduced, taking about only one minute for the lean sample
and three minutes and a half for the obese metagenome.
Runtime executions were measured using a regular Intel
i5 machine with 4 GB of RAM.

Conclusions
Metagenomics is an effervescent field and there are still a
number of questions that need to be addressed before a
stable version of data analysis software becomes available.
Currently, metagenomic analysis tools generally repre-
sent a closed environment and offer few configuration
options and limited extension possibilities. Our aim was
to develop a software framework to which other mod-
ules could be added. An additional motivation to develop
this software was the need for software sensitive enough
to detect the presence of low-abundance species. Finally,
our intent was to provide data in standard and editable
formats that facilitate further analysis with external
software.
The proposed workflow software offers several notable

advantages over the software currently available in the
market. Firstly, the use of GECKO enables this software to
compute similarity searches in the samples against a col-
lection of genomes in a reasonable time. We found that
better results are obtained if a collection of genomes –
rather than genes or proteins– is used. At least this was the
case when not all genes/proteins from the genomes were
registered in reference databases. Moreover, if genomic
samples are used (not only transcriptomics), a significant
amount of reads would map to unannotated regions, and
therefore they would not match to databases composed of
genes or proteins.

The Author(s) BMCGenomics 2016, 17(Suppl 8):802 Page 360 of 462

(a)

(b)

(c)
Fig. 4MEGAN and MGWorkflow comparison. Comparative analysis for the lean metagenome shows similar mapping abundances. a Abundance
plot by species in percentages. b Total reads assigned by each method and total number of reads in the metagenome. c Abundance chart by family
(except Actinobacteria, shown as Phylum)

Providing different mapping alternatives helps set up a
sort of quality measures of the mapping process based
on abundance differences across mapping alternatives.
In addition, the study of the different alternatives could
reveal hidden interactions or shared similarities between
species that cooperate in some aspects.
The proposed software is designed to provide evi-

dence of the presence of low-abundance species by find-
ing particular specific regions of genomes with mapped
reads. These mapped reads provide strong evidence of
the species present in samples. The methods developed
for assessing and evaluating the quality of mapping also
improve accuracy and reliability in terms of the identifica-
tion of the species present in a sample.
From our perspective, the most important contribution

of this workflow software is that it offers the possibil-
ity of incorporating new software to extend the analysis

workflow by showing datafile specifications enabling fine-
grained metagenomic data analysis.

Additional file

Additional file 1: Supplementary material. (PDF 1269 kb)

Acknowledgements
The authors of the manuscript want to thank for all the support provided by
the Franciele Maboni Siqueira, Arnaldo Zaha, Ana-Tereza Ribeiro de
Vasconcelos, Gonzalo Claros and María del Carmen Morcillo Aixela.

Declarations
This article has been published as part of BMC Genomics Volume 17
Supplement 8: Selected articles from the Sixth International Conference of the
Iberoamerican Society for Bioinformatics on Bioinformatics and
Computational Biology for Innovative Genomics. The full contents of the
supplement are available online at https://bmcgenomics.biomedcentral.com/
articles/supplements/volume-17-supplement-8.

The Author(s) BMCGenomics 2016, 17(Suppl 8):802 Page 361 of 462

Funding
This work has been partially supported by the ISCIII (projects: PT13.001.012
and RD12.013.006) and the EU Comission through the Mr.SBM project, code
324554. The publication fees of this work have been funded by the ISCIII
through the project RD12.013.006.

Availability of data andmaterials
The dataset(s) supporting the conclusions of this article is (are) available in the
EBI Metagenomics repository https://www.ebi.ac.uk/metagenomics/. The
software, additional files, user guides, training material and experiments can
be found at http://www.bitlab-es.com/geckointhesubsectionMETA-GECKO.

Authors’ contributions
EP-W and JA-M contributed in the software development. OT and OT
supervised and coordinated the work and provided ideas for the development
of new tools. EU contributed with the biological aspects of the paper. All of
the authors contributed to the manuscript’s preparation. All the authors read
and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Author details
1Department of Computer Architecture, University of Málaga, Boulevard Louis
Pasteur 35, Málaga, Spain. 2Advanced Computing Technologies Unit, RISC
Software GmbH, Softwarepark 35, Hagenberg, Austria.

Published: 25 October 2016

References
1. Huson DH, Weber N. Microbial community analysis using MEGAN.

Methods Enzymol. 2012;531:465–85.
2. Meyer F, et al. The metagenomics RAST server–a public resource for the

automatic phylogenetic and functional analysis of metagenomes. BMC
Bioinforma. 2008;9(1):386.

3. Hunter S, et al. EBI metagenomics—a new resource for the analysis and
archiving of metagenomic data. Nucleic Acids Res. 2014;42(D1):
D600–D6.

4. Altschul SF, et al. Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res. 1997;25(17):
3389–402.

5. Caporaso GJ, et al. QIIME allows analysis of high-throughput community
sequencing data. Nat Methods. 2010;7(5):335–6.

6. Kent WJ. BLAT—the BLAST-like alignment tool. Genome Res. 2002;12(4):
656–64.

7. METApipe Metagenomics Analysis Pipeline. http://bdps.cs.uit.no/
papers/nesus-metapipe.pdf.

8. Noguchi H, Taniguchi T, Itoh T. MetaGeneAnnotator: detecting
species-specific patterns of ribosomal binding site for precise gene
prediction in anonymous prokaryotic and phage genomes. DNA Res.
2008;15(6):387–96.

9. Noguchi H, Park J, Takagi T. MetaGene: prokaryotic gene finding from
environmental genome shotgun sequences. Nucleic Acids Res.
2006;34(19):5623–30.

10. Oliveira MFdS, et al. Ribosome binding site recognition using neural
networks. Genet Mol Biol. 2004;27(4):644–50.

11. Kultima JR, et al. MOCAT: a metagenomics assembly and gene
prediction toolkit. PLoS ONE. 2012;7(10):e47656.

12. Illumina Sequencing Methods. http://www.illumina.com/techniques/
sequencing.html.

13. Falgueras J, et al. SeqTrim: a high-throughput pipeline for pre-processing
any type of sequence read. BMC Bioinforma. 2010;11(1):1.

14. 454 Life Sciences Technology. http://my454.com/products/technology.
asp.

15. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for
Illumina sequence data. Bioinformatics. 2014;30:2114–20.

16. Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, Čech M,
Chilton J, Clements D, Coraor N, et al. The Galaxy platform for
accessible, reproducible and collaborative biomedical analyses: 2016
update. Nucleic Acids Res. 2016;44:W3–W10.

17. Torreno O, Trelles O. Breaking the computational barriers of pairwise
genome comparison. BMC Bioinforma. 2015;16(1):1.

18. Rumble SM, et al. SHRiMP: accurate mapping of short color-space reads.
PLoS Comput Biol. 2009;5(5):e1000386.

19. SOLiD Next-Generation Sequencing. http://www.thermofisher.com/es/
es/home/life-science/sequencing/next-generation-sequencing/solid-
next-generation-sequencing.html?cid=fl-WE111642.

20. Benson DA, et al. GenBank. Nucleic Acids Res. 2008;36(suppl 1):D25–D30.
21. Brudno M, et al. Glocal alignment: finding rearrangements during

alignment. Bioinformatics. 2003;19(suppl 1):i54–i62.
22. Karlin S, Altschul SF. Methods for assessing the statistical significance of

molecular sequence features by using general scoring schemes. Proc
Natl Acad Sci. 1990;87(6):2264–8.

23. Galaxy Guided Exercise at BitLab’s Research Site. www.bitlab-es.com/
gecko/documents/GalaxyGuidedExercise.pdf.

24. Turnbaugh PJ, et al. A core gut microbiome in obese and lean twins.
Nature. 2009;457(7228):480–4.

25. Gomez-Alvarez V, Teal TK, Schmidt TM. Systematic artifacts in
metagenomes from complex microbial communities. ISME J. 2009;3(11):
1314–7.

26. Boeckmann B, et al. The SWISS-PROT protein knowledgebase and its
supplement TrEMBL in 2003. Nucleic Acids Res. 2003;31(1):365–70.

27. Sander Ch, Schneider R. Database of homology derived protein
structures and the structural meaning of sequence alignment. Proteins.
1991;9(1):56–68.

28. Rost B. Twilight zone of protein sequence alignments. Protein Eng.
1999;12:85–94.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

Section E

List of 68 Mycoplasmas

NC_000908.2 M. genitalium G37
NC_000912.1 M. pneumoniae M129
NC_002771.1 M. pulmonis UAB CTIP
NC_004432.1 M. penetrans HF-2 DNA
NC_004829.2 M. gallisepticum str. R(low)
NC_005364.2 M. mycoides subsp. mycoides SC str. PG1 chromosome
NC_006360.1 M. hyopneumoniae 232
NC_006908.1 M. mobile 163K
NC_007294.1 M. synoviae 53
NC_007295.1 M. hyopneumoniae J
NC_007332.1 M. hyopneumoniae 7448
NC_007633.1 M. capricolum subsp. capricolum ATCC 27343
NC_009497.1 M. agalactiae PG2 chromosome
NC_011025.1 M. arthritidis 158L3-1
NC_012806.1 M. conjunctivae HRC/581T
NC_013511.1 M. hominis ATCC 23114 chromosome
NC_013948.1 M. agalactiae 5632 chromosome
NC_014014.1 M. crocodyli MP145
NC_014448.1 M. hyorhinis HUB-1
NC_014552.1 M. fermentans JER
NC_014751.1 M. leachii PG50 clone MU clone A8
NC_014760.1 M. bovis PG45 clone MU clone A2
NC_014921.1 M. fermentans M64
NC_014970.1 M. haemofelis str. Langford 1

104 List of 68 Mycoplasmas

NC_015153.1 M. suis KI3806
NC_015155.1 M. suis str. Illinois
NC_015431.1 M. mycoides subsp. capri LC str. 95010
NC_015725.1 M. bovis Hubei-1
NC_015946.1 M. putrefaciens KS1
NC_016638.1 M. haemocanis str. Illinois
NC_016807.1 M. pneumoniae 309 DNA
NC_016829.1 M. hyorhinis GDL-1
NC_017502.1 M. gallisepticum str. R(high)
NC_017503.1 M. gallisepticum str. F
NC_017504.1 M. pneumoniae FH
NC_017509.1 M. hyopneumoniae 168
NC_017519.1 M. hyorhinis MCLD
NC_017520.1 M. haemofelis Ohio2
NC_017521.1 M. leachii 99/014/6
NC_018077.1 M. bovis HB0801
NC_018149.1 M. wenyonii str. Massachusetts
NC_018406.1 M. gallisepticum VA94_7994-1-7P
NC_018407.1 M. gallisepticum NC95_13295-2-2P
NC_018408.1 M. gallisepticum NC96_1596-4-2P
NC_018409.1 M. gallisepticum NY01_2001.047-5-1P
NC_018410.1 M. gallisepticum WI01_2001.043-13-2P
NC_018411.1 M. gallisepticum NC06_2006.080-5-2P
NC_018412.1 M. gallisepticum CA06_2006.052-5-2P
NC_018413.1 M. gallisepticum NC08_2008.031-4-3P
NC_018495.1 M. genitalium M2321
NC_018496.1 M. genitalium M6282
NC_018497.1 M. genitalium M6320
NC_018498.1 M. genitalium M2288
NC_019552.1 M. hyorhinis SK76
NC_019949.1 M. cynos C142
NC_021002.1 M. fermentans PG18 DNA nearly
NC_021025.1 M. mycoides subsp. mycoides SC str. Gladysdale MU clone
NC_021083.1 M. putrefaciens Mput9231
NC_021283.1 M. hyopneumoniae 168-L
NC_021831.1 M. hyopneumoniae 7422
NC_022575.1 M. parvum str. Indiana
NC_022807.1 M. hyorhinis DBS 1050
NC_023062.1 M. ovis str. Michigan

Section F

Resumen en español

Esta tesis es un compendio de tres artículos recientemente publicados en revistas de alto
impacto, en los cuales mostramos el proceso que nos ha llevado a proponer la definición
de Unidades Elementales de conservación (regiones conservadas entre genomas que son
detectadas después de una comparación múltiple), así como algunas operaciones básicas
como inversiones, transposiciones y duplicaciones. Los tres artículos están transversalmente
conectados por la detección de Bloques de Sintenia (SB) y reorganizaciones genómicas de
gran escala (LSGR) (consultar sección 2), y respaldan la necesidad de elaborar el framework
que se describe en la sección 3. De hecho, el trabajo intelectual llevado a cabo en esta tesis y
las conclusiones aportadas por las publicaciones han sido esenciales para entender que una
definición de SB apropiada es la clave para muchos de los métodos de comparativa genómica.

Los eventos de reorganización del ADN son una de las principales causas de evolución y
sus efectos pueden ser observados en nuevas especies, nuevas funciones biológicas etc. Las
reorganizaciones a pequeña escala como inserciones, deleciones o substituciones han sido
ampliamente estudiadas y existen modelos aceptados para detectarlas.

Sin embargo, los métodos para identificar reorganizaciones a gran escala aún sufren de
limitaciones y falta de precisión, debido principalmente a que no existe todavía una definición
de SB aceptada. El concepto de SB hace referencia a regiones conservadas entre dos genomas
que guardan el mismo orden y strand. A pesar de que existen métodos para detectarlos, éstos
evitan tratar con repeticiones o restringen la búsqueda centrándose solamente en las regiones
codificantes en aras de un modelo más simple. El refinamiento de los bordes de estos bloques
es a día de hoy un problema aún por solucionar.

Esta tesis por compendio aborda la definición formal de SB, empezando por Pares
de Segmentos de alta puntuación (HSP), los cuales son bien conocidos y aceptados. El
primer objetivo se centró en la detección de SB como una combinación de HSPs incluyendo

106 Resumen en español

repeticiones lo cual incrementó la complejidad del modelo. Como resultado, se obtuvo un
método más preciso y que mejora la calidad de los resultados del estado del arte [6].

Este método aplica reglas basadas en la adyacencia de SBs, permitiendo además detectar
LSGR e identificarlos como inversiones, translocaciones o duplicaciones, constituyendo un
framework capaz de trabajar con LSGR para organismos de un solo cromosoma.

Más tarde en un segundo artículo, se utilizó este framework para refinar los bordes de los
SBs. En nuestra novedosa propuesta, las repeticiones que flanquean los SB se utilizaron para
refinar los bordes explotando la redundancia introducida por dichas repeticiones. Mediante
un alineamiento múltiple de estas repeticiones se calculan los vectores de identidad del SB
y de la secuencia consenso de las repeticiones alineadas. Posteriormente, una máquina de
estados finitos diseñada para detectar los puntos de transición en la diferencia de ambos
vectores determina los puntos de inicio y fin de los SB refinados [5]. Este método también
se mostró útil a la hora de detectar puntos de ruptura (conocidos como break points (BP)).
Estos puntos aparecen como la región entre dos SBs adyacentes. El método no fuerza a que
el BP sea una región o un punto, sino que depende de los alineamientos de las repeticiones y
del SB en cuestión.

El método es aplicado en un tercer trabajo, donde se afronta un caso de uso de análisis de
metagenomas [76]. Es bien sabido que la información almacenada en las bases de datos no
corresponde necesariamente a las muestras no cultivadas contenidas en un metagenoma, y
es posible imaginar que la asignación de una muestra de un metagenoma se vea dificultada
por un evento reorganizativo. En el articulo se muestra que las muestras de un metagenoma
que mapean sobre las regiones exclusivas de un genoma (aquellas que no comparte con otros
genomas) respaldan la presencia de ese genoma en el metagenoma. Estas regiones exclusivas
son fácilmente derivadas a partir de una comparación múltiple de genomas, como aquellas
regiones que no forman parte de ningún SB.

Una definición bajo un espacio de comparación múltiple de genomas es más precisa que
las definiciones construidas a partir de una comparación de pares, ya que entre otras cosas,
permite un refinamiento siguiendo un procedimiento similar al descrito en el segundo artículo
(usando SBs, en vez de repeticiones). Esta definición también resuelve la contradicción
existente en la definición de puntos de BPs (mencionado en la segunda publicación), por la
cual una misma región de un genoma puede ser detectada como BP o formar parte de un SB
dependiendo del genoma con el que se compare.

Esta definición de SB en comparación múltiple proporciona además información precisa
para la reconstrucción de LSGR, con vistas a obtener una aproximación del verdadero
ancestro común entre especies. Además, proporciona una solución para el problema de la
granularidad en la detección de SBs: comenzamos por SBs pequeños y bien conservados y a

107

través de la reconstrucción de LSGR se va aumentando gradualmente el tamaño de dichos
bloques.

Los resultados que se esperan de esta línea de trabajo apuntan a una definición de una
métrica destinada a obtener distancias inter genómicas más precisas, combinando similaridad
entre secuencias y frecuencias de LSGR.

	Table of contents
	List of figures
	1 Introduction
	1.1 Research objectives
	1.2 Results
	1.3 Contribution of this thesis
	1.4 Outline of the Thesis

	2 Background
	2.1 Synteny Blocks and Break Points
	2.2 The granularity problem in Synteny Block detection
	2.3 The Break Point definition
	2.4 Sorting Permutation Problem
	2.5 Some remarks regarding current Sorting Permutations methods approaches

	3 Systems and Methods
	3.1 Introduction
	3.2 Synteny Block definition
	3.3 The Unitary Conserved Element problem
	3.4 Transitivity property of Synteny Blocks: Inferring less conserved HSPs
	3.5 Rearrangements detection and reconstruction via Unitary Synteny Block
	3.5.1 Synteny Block concatenation
	3.5.2 Insertions and deletions
	3.5.3 Duplications
	3.5.4 Inversions
	3.5.5 Transpositions

	4 Results and discussion
	5 Conclusions and future work
	5.1 Conclusions
	5.2 Future work
	5.2.1 Detecting Break Points using a Machine Learning approach

	References
	Appendix A Sequence comparison algorithms
	A.1 Pairwise sequence alignments
	A.2 Multiple sequence alignment algorithms
	A.3 New strategies: homology search methods
	A.4 Statistical Significance
	A.5 Dealing with repetitions

	Appendix B Methods in the State of art for Synteny Block detection
	Appendix C Sorting permutation problem state of art
	C.1 Sorting by reversals
	C.2 Sorting by transpositions
	C.3 Weighted operations and other evolutionary events
	C.4 DCJ

	Appendix D Publications
	Appendix E List of 68 Mycoplasmas
	Appendix F Resumen en español

