Günter Klambauerphone: +43-732-2468-4520 e-mail: klambauer@bioinf.jku.at Room: S3 327 (Computer Science Building, Science Park 3) |
Curriculum Vitae: PDF
Consulting hours (Sprechstunde)
Upon email request.Current
Selected Publications
See also [Google Scholar]- Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter (2017). Self-Normalizing Neural Networks. Advances in Neural Information Processing Systems 30, 972--981. [PDF]
- Kristina Preuer, Richard P Lewis, Sepp Hochreiter, Andreas Bender, Krishna C Bulusu, and Günter Klambauer (2017). DeepSynergy: Predicting anti-cancer drug synergy with Deep Learning. Bioinformaticsdoi: 10.1093/bioinformatics/btx806
- Jaak Simm, Günter Klambauer, Adam Arany, ... & Hugo Ceulemans (2017). Repurposed high-throughput images enable biological activity prediction for drug discovery. bioRxiv, 108399. doi: 10.1101/108399
- Andreas Mayr, Günter Klambauer, Thomas Unterthiner, Sepp Hochreiter (2016). DeepTox: Toxicity Prediction using Deep Learning, Frontiers in Environmental Science, 3:80. doi: 10.3389/fenvs.2015.00080
- Federica Eduati, Lara M Mangravite, Tao Wang, Hao Tang, ... , Sepp Hochreiter, Günter Klambauer, Andreas Mayr, ... , Ivan Rusyn, Fred A Wright, Gustavo Stolovitzky, Yang Xie, and Julio Saez-Rodriguez (2015). Prediction of human population responses to toxic compounds by a collaborative competition. Nature Biotechnology http://doi:10.1038/nbt.3299.
- Günter Klambauer, Martin Wischenbart, Michael Mahr, Thomas Unterthiner, Andreas Mayr, Sepp Hochreiter (2015). Rchemcpp: a web service for structural analoging in ChEMBL, Drugbank and the Connectivity Map. Bioinformatics http://doi:10.1093/bioinformatics/btv373.
- Günter Klambauer, Bie Verbist, Liesbet Vervoort, Willem Talloen, QSTAR Consortium, Ziv Shkedy, Olivier Thas, Andreas Bender, Hinrich W.H. Göhlmann, Sepp Hochreiter (2015). Using transcriptomics to guide lead optimization in drug discovery projects. Drug Discovery Today, 20(5). http://dx.doi.org/10.1016/j.drudis.2014.12.014.
- Thomas Unterthiner, Andreas Mayr, Günter Klambauer, Marvin Steijaert, Jörg Wegner, Hugo Ceulemans, Sepp Hochreiter (2014). Deep Learning as an Opportunity in Virtual Screening, Deep Learning and Representation Learning Workshop, in conjunction with Neural Information Processing Systems (NIPS 2014), Montreal, Canada, 2014, PDF
- Klambauer, G., Unterthiner, T., & Hochreiter, S. (2013). DEXUS: identifying differential expression in RNA-Seq studies with unknown conditions. Nucleic Acids Research, 41(21), e198-e198. doi:10.1093/nar/gkt834
- Klambauer, G., Schwarzbauer, K., Mayr, A., Clevert, D. A., Mitterecker, A., Bodenhofer, U., & Hochreiter, S. (2012). cn. MOPS: mixture of Poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate. Nucleic Acids Research, 40(9), e69-e69. doi:10.1093/nar/gks003
Publication list
Author | Title | Year | Journal/Proceedings | Reftype | DOI/URL |
---|---|---|---|---|---|
Akbar, R., Robert, P.A., Weber, C.R., Widrich, M., Frank, R., Pavlović, M., Scheffer, L., Chernigovskaya, M., Snapkov, I., Slabodkin, A. and others | In silico proof of principle of machine learning-based antibody design at unconstrained scale | 2021 | BioRXiV | article | |
Fürst, A., Rumetshofer, E., Tran, V., Ramsauer, H., Tang, F., Lehner, J., Kreil, D., Kopp, M., Klambauer, G., Bitto-Nemling, A. and others | CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP | 2021 | arXiv preprint arXiv:2110.11316 | article | |
Hoedt, P.-J., Kratzert, F., Klotz, D., Halmich, C., Holzleitner, M., Nearing, G., Hochreiter, S. and Klambauer, G. | MC-LSTM: Mass-Conserving LSTM | 2021 | Proceedings of the 38th International Conference on Machine Learning Vol. 139, pp. 4275-4286 |
article | |
Kimeswenger, S., Tschandl, P., Noack, P., Hofmarcher, M., Rumetshofer, E., Kindermann, H., Silye, R., Hochreiter, S., Kaltenbrunner, M., Guenova, E. and others | Artificial neural networks and pathologists recognize basal cell carcinomas based on different histological patterns | 2021 | Modern Pathology Vol. 34(5), pp. 895-903 |
article | |
Klotz, D., Kratzert, F., Gauch, M., Sampson, A.K., Klambauer, G., Brandstetter, J., Hochreiter, S. and Nearing, G. | Uncertainty estimation with LSTM based rainfall-runoff models | 2021 | EGU General Assembly Conference Abstracts, pp. EGU21-13308 | inproceedings | |
Klotz, D., Kratzert, F., Gauch, M., Keefe Sampson, A., Brandstetter, J., Klambauer, G., Hochreiter, S. and Nearing, G. | Uncertainty Estimation with Deep Learning for Rainfall--Runoff Modelling | 2021 | Hydrology and Earth System Sciences Discussions, pp. 1-32 | article | |
Mercado, R., Rastemo, T., Lindelöf, E., Klambauer, G., Engkvist, O., Chen, H. and Bjerrum, E.J. | Graph networks for molecular design | 2021 | Machine Learning: Science and Technology Vol. 2(2), pp. 025023 |
article | |
Ramsauer, H., Schäfl, B., Lehner, J., Seidl, P., Widrich, M., Gruber, L., Holzleitner, M., Adler, T., Kreil, D., Kopp, M.K., Klambauer, G., Brandstetter, J. and Hochreiter, S. | Hopfield networks is all you need | 2021 | International Conference on Learning Representations | article | |
Robert, P.A., Akbar, R., Frank, R., Pavlović, M., Widrich, M., Snapkov, I., Chernigovskaya, M., Scheffer, L., Slabodkin, A., Mehta, B.B. and others | One billion synthetic 3D-antibody-antigen complexes enable unconstrained machine-learning formalized investigation of antibody specificity prediction | 2021 | BioRXiV | article | |
Roland, T., Boeck, C., Tschoellitsch, T., Maletzky, A., Hochreiter, S., Meier, J. and Klambauer, G. | Machine Learning based COVID-19 Diagnosis from Blood Tests with Robustness to Domain Shifts | 2021 | medRxiv | article | |
Schimunek, J., Friedrich, L., Kuhn, D., Hochreiter, S., Rippmann, F. and Klambauer, G. | Comparative assessment of interpretability methods of deep activity models for hERG | 2021 | 19th International Workshop on (Q)SAR in Environmental and Health Sciences | conference | |
Schimunek, J., Friedrich, L., Kuhn, D., Rippmann, F., Hochreiter, S. and Klambauer, G. | A generalized framework for embedding-based few-shot learning methods in drug discovery | 2021 | ELLIS Machine Learning for Molecule Discovery Workshop | conference | |
Seidl, P., Halmich, C., Mayr, A., Vall, A., Ruch, P., Hochreiter, S. and Klambauer, G. | Benchmarking recent Deep Learning methods on the extended Tox21 data set | 2021 | 19th International Workshop on (Q)SAR in Environmental and Health Sciences | conference | |
Seidl, P., Renz, P., Dyubankova, N., Neves, P., Verhoeven, J., Segler, M., Wegner, J.K., Hochreiter, S. and Klambauer, G. | Modern Hopfield Networks for Few-and Zero-Shot Reaction Template Prediction | 2021 | arXiv preprint arXiv:2104.03279 | article | |
Vall, A., Hochreiter, S. and Klambauer, G. | BioassayCLR: Prediction of biological activity for novel bioassays based on rich textual descriptions | 2021 | ELLIS Machine Learning for Molecule Discovery Workshop | conference | |
Vall, A., Sabnis, Y., Shi, J., Class, R., Hochreiter, S. and Klambauer, G. | The promise of AI for DILI prediction | 2021 | Frontiers in Artificial Intelligence Vol. 4, pp. 15 |
article | |
Adler, T., Brandstetter, J., Widrich, M., Mayr, A., Kreil, D., Kopp, M., Klambauer, G. and Hochreiter, S. | Cross-Domain Few-Shot Learning by Representation Fusion | 2020 | arXiv preprint arXiv:2010.06498 | article | |
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B. and Hochreiter, S. | Two time-scale update rule for training GANs | 2020 | misc | ||
Hofmarcher, M., Mayr, A., Rumetshofer, E., Ruch, P., Renz, P., Schimunek, J., Seidl, P., Vall, A., Widrich, M., Hochreiter, S. and others | Large-scale ligand-based virtual screening for SARS-CoV-2 inhibitors using deep neural networks | 2020 | Available at SSRN 3561442 | techreport | DOI |
Klotz, D., Kratzert, F., Sampson, A.K., Klambauer, G., Hochreiter, S. and Nearing, G. | Learning from mistakes: Online updating for deep learning models. | 2020 | EGU General Assembly Conference Abstracts, pp. 8853 | inproceedings | |
Kratzert, F., Klotz, D., Klambauer, G., Nearing, G. and Hochreiter, S. | The performance of LSTM models from basin to continental scales | 2020 | Copernicus Meetings | techreport | |
Kratzert, F., Klotz, D., Shalev, G., Nevo, S., Klambauer, G., Nearing, G. and Hochreiter, S. | Towards deep learning based flood forecasting for ungauged basins | 2020 | EGU General Assembly Conference Abstracts, pp. 8932 | inproceedings | |
Kratzert, F., Klotz, D., Shalev, G., Nevo, S., Klambauer, G., Nearing, G. and Hochreiter, S. | Towards deep learning based flood forecasting for ungauged basins | 2020 | Copernicus Meetings | techreport | |
Mayr, A., Klambauer, G., Unterthiner, T. and Hochreiter, S. | The LSC Benchmark Dataset: Technical Appendix and Partial Reanalysis | 2020 | LIT AI Lab & Institute for Machine Learning, Johannes Kepler University Linz | techreport | |
Mercado, R., Rastemo, T., Lindelöf, E., Klambauer, G., Engkvist, O., Chen, H. and Bjerrum, E.J. | Practical notes on building molecular graph generative models | 2020 | Applied AI Letters Vol. 1(2) |
article | |
Nearing, G., Kratzert, F., Klotz, D., Hoedt, P.-J., Klambauer, G., Hochreiter, S., Gupta, H., Nevo, S. and Matias, Y. | A Deep Learning Architecture for Conservative Dynamical Systems: Application to Rainfall-Runoff Modeling | 2020 | AI for Earth Sciences Workshop at NEURIPS | inproceedings | |
Ramsauer, H., Schäfl, B., Lehner, J., Seidl, P., Widrich, M., Gruber, L., Holzleitner, M., Pavlović, M., Sandve, G.K., Greiff, V. and others | Hopfield networks is all you need | 2020 | arXiv preprint arXiv:2008.02217 | article | |
Renz, P., Van Rompaey, D., Wegner, J.K., Hochreiter, S. and Klambauer, G. | On failure modes in molecule generation and optimization | 2020 | Drug Discovery Today: Technologies | article | |
Sturm, N., Mayr, A., Le Van, T., Chupakhin, V., Ceulemans, H., Wegner, J., Golib-Dzib, J.-F., Jeliazkova, N., Vandriessche, Y., Böhm, S. and others | Industry-scale application and evaluation of deep learning for drug target prediction | 2020 | Journal of Cheminformatics Vol. 12(1), pp. 1-13 |
article | DOI |
Widrich, M., Schäfl, B., Pavlović, M., Sandve, G.K., Hochreiter, S., Greiff, V. and Klambauer, G. | DeepRC: Immune repertoire classification with attention-based deep massive multiple instance learning | 2020 | bioRxiv | article | DOI |
Widrich, M., Schäfl, B., Ramsauer, H., Pavlović, M., Gruber, L., Holzleitner, M., Brandstetter, J., Sandve, G.K., Greiff, V., Hochreiter, S. and others | Modern Hopfield networks and attention for immune repertoire classification | 2020 | arXiv preprint arXiv:2007.13505 | article | |
Hofmarcher, M., Rumetshofer, E., Clevert, D.-A., Hochreiter, S. and Klambauer, G. | Accurate prediction of biological assays with high-throughput microscopy images and convolutional networks | 2019 | Journal of chemical information and modeling Vol. 59(3), pp. 1163-1171 |
article | DOI |
Hofmarcher, M., Unterthiner, T., Arjona-Medina, J., Klambauer, G., Hochreiter, S. and Nessler, B. | Visual scene understanding for autonomous driving using semantic segmentation | 2019 | Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, pp. 285-296 | incollection | DOI |
Kimeswenger, S., Klambauer, G., Lang, G., Hofmarcher, M., Tschandl, P., Sinz, C., Petronio, G., Silye, R., Kittler, H. and Hötzenecker, W. | Neural networks detect cutaneous basal cell carcinomas in histological sections (452) | 2019 | Journal of Investigative Dermatology Vol. 139(9), pp. S292 |
article | |
Kimeswenger, S., Rumetshofer, E., Hofmarcher, M., Tschandl, P., Kittler, H., Hochreiter, S., Hötzenecker, W. and Klambauer, G. | Detecting cutaneous basal cell carcinomas in ultra-high resolution and weakly labelled histopathological images | 2019 | Workshop on Machine Learning for Health (ML4H at 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada. | article | |
Kimeswenger, S., Klambauer, G., Lang, G., Silye, R. and Hotzenecker, W. | The power of neural networks to detect cutaneous basal cell carcinomas in histological sections | 2019 | Vol. 28(3)Experimental Dermatology, pp. E38-E38 |
inproceedings | |
Klotz, D., Kratzert, F., Herrnegger, M., Hochreiter, S. and Klambauer, G. | Towards the quantification of uncertainty for deep learning based rainfall-runoff models. | 2019 | Vol. 21Geophysical Research Abstracts |
inproceedings | |
Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S. and Nearing, G. | Benchmarking a catchment-aware Long Short-Term Memory Network (LSTM) for large-scale hydrological modeling | 2019 | arXiv preprint arXiv:1907.08456 | article | DOI |
Kratzert, F., Klotz, D., Klambauer, G., Hochreiter, S. and Nearing, G.S. | Large-Scale Rainfall-Runoff Modeling using the Long Short-Term Memory Network | 2019 | AGU Fall Meeting 2019 | inproceedings | |
Kratzert, F., Herrnegger, M., Klotz, D., Hochreiter, S. and Klambauer, G. | NeuralHydrology--Interpreting LSTMs in Hydrology | 2019 | Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, pp. 347-362 | incollection | DOI |
Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S. and Nearing, G. | Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets. | 2019 | Hydrology & Earth System Sciences Vol. 23(12) |
article | DOI |
Kratzert, F., Klotz, D., Herrnegger, M., Hochreiter, S. and Klambauer, G. | Using large data sets towards generating a catchment aware hydrological model for global applications. | 2019 | Vol. 21Geophysical Research Abstracts |
inproceedings | |
Nearing, G., Kratzert, F., Klotz, D., Klambauer, G. and Hochreiter, S. | Large-Scale Rainfall-Runoff Modeling using the Long Short-Term Memory Network | 2019 | AGUFM Vol. 2019, pp. H53B-05 |
article | |
Preuer, K., Klambauer, G., Rippmann, F., Hochreiter, S. and Unterthiner, T. | Interpretable deep learning in drug discovery | 2019 | Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, pp. 331-345 | incollection | DOI |
Renz, P., Hochreiter, S. and Klambauer, G. | Uncertainty Estimation Methods to Support Decision-Making in Early Phases of Drug Discovery | 2019 | Workshop on Safety and Robustness in Decision-making at 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada. | inproceedings | [PDF] |
Vondra, S., Kunihs, V., Eberhart, T., Eigner, K., Bauer, R., Haslinger, P., Haider, S., Windsperger, K., Klambauer, G., Schütz, B. and others | Metabolism of cholesterol and progesterone is differentially regulated in primary trophoblastic subtypes and might be disturbed in recurrent miscarriages | 2019 | Journal of lipid research Vol. 60(11), pp. 1922-1934 |
article | DOI |
Kratzert, F., Herrnegger, M., Klotz, D., Hochreiter, S. and Klambauer, G. | Do internals of neural networks make sense in the context of hydrology? | 2018 | AGUFM Vol. 2018, pp. H13B-06 |
article | |
Mayr, A., Klambauer, G., Unterthiner, T., Steijaert, M., Wegner, J.K., Ceulemans, H., Clevert, D.-A. and Hochreiter, S. | Large-scale comparison of machine learning methods for drug target prediction on ChEMBL | 2018 | Chemical science Vol. 9(24), pp. 5441-5451 |
article | DOI |
Hoedt, P.J., Hochreiter, S., and Klambauer, G. | Characterising activation functions by their backward dynamics around forward fixed points | 2018 | Critiquing and Correcting Trends in Machine Learning NeurIPS 2018 Workshop |
article | [PDF] |
Povysil, G., Tzika, A., Vogt, J., Haunschmid, V., Messiaen, L., Zschocke, J., Klambauer, G., Hochreiter, S. and Wimmer, K. | panelcn. MOPS: CNV detection in targeted NGS panel data for clinical diagnostics | 2018 | Vol. 26EUROPEAN JOURNAL OF HUMAN GENETICS, pp. 698-698 |
inproceedings | |
Preuer, K., Renz, P., Unterthiner, T., Hochreiter, S. and Klambauer, G. | Fréchet ChemblNet Distance: A metric for generative models for molecules | 2018 | arXiv preprint arXiv:1803.09518 | article | |
Preuer, K., Renz, P., Unterthiner, T., Hochreiter, S. and Klambauer, G. | Fréchet ChemNet distance: a metric for generative models for molecules in drug discovery | 2018 | Journal of chemical information and modeling Vol. 58(9), pp. 1736-1741 |
article | DOI |
Preuer, K., Lewis, R.P., Hochreiter, S., Bender, A., Bulusu, K.C. and Klambauer, G. | DeepSynergy: predicting anti-cancer drug synergy with Deep Learning | 2018 | Bioinformatics Vol. 34(9), pp. 1538-1546 |
article | DOI |
Preuer, K., Renz, P., Unterthiner, T., Hochreiter, S. and Klambauer, G. | Fréchet ChemNet distance: a metric for generative models for molecules in drug discovery | 2018 | Journal of chemical information and modeling Vol. 58(9), pp. 1736-1741 |
article | DOI |
Rumetshofer, E., Hofmarcher, M., Röhrl, C., Hochreiter, S. and Klambauer, G. | Human-level protein localization with convolutional neural networks | 2018 | International Conference on Learning Representations | inproceedings | |
Simm, J., Klambauer, G., Arany, A., Steijaert, M., Wegner, J.K., Gustin, E., Chupakhin, V., Chong, Y.T., Vialard, J., Buijnsters, P. and others | Repurposed high-throughput image assays enables biological activity prediction for drug discovery | 2018 | Cell Chemical Biology, pp. 108399 | article | |
Sturm, N., Sun, J., Vandriessche, Y., Mayr, A., Klambauer, G., Carlsson, L., Engkvist, O. and Chen, H. | Application of bioactivity profile-based fingerprints for building machine learning models | 2018 | Journal of chemical information and modeling Vol. 59(3), pp. 962-972 |
article | DOI |
Unterthiner, T., Nessler, B., Seward, C., Klambauer, G., Heusel, M., Ramsauer, H. and Hochreiter, S. | Coulomb GANs: Provably optimal nash equilibria via potential fields | 2018 | International Conference on Learning Representations 2018 | article | |
Eigner, K., Filik, Y., Mark, F., Schütz, B., Klambauer, G., Moriggl, R., Hengstschläger, M., Stangl, H., Mikula, M. and Röhrl, C. | The unfolded protein response impacts melanoma progression by enhancing FGF expression and can be antagonized by a chemical chaperone | 2017 | Scientific reports Vol. 7(1), pp. 1-12 |
article | DOI |
Klambauer, G., Unterthiner, T., Mayr, A. and Hochreiter, S. | Self-Normalizing Neural Networks | 2017 | Advances in Neural Information Processing Systems 30, pp. 972-981 | inproceedings | |
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Klambauer, G. and Hochreiter, S. | GANs Trained by a Two Time-Scale Update Rule Converge to a Nash Equilibrium | 2017 | https://arxiv.org/abs/1706.08500v4 | article | [PDF] |
Povysil, G., Tzika, A., Vogt, J., Haunschmid, V., Messiaen, L., Zschocke, J., Klambauer, G., Hochreiter, S. and Wimmer, K. | panelcn. MOPS: Copy-number detection in targeted NGS panel data for clinical diagnostics | 2017 | Human mutation Vol. 38(7), pp. 889-897 |
article | DOI |
Wittwehr, C., Aladjov, H., Ankley, G., Byrne, H.J., de Knecht, J., Heinzle, E., Klambauer, G., Landesmann, B., Luijten, M., MacKay, C. and others | How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology | 2017 | Toxicological Sciences Vol. 155(2), pp. 326-336 |
article | DOI |
De Troyer, E., Sengupta, R., Martin Otava, J.D., Zhang, S.K., Culhane, A., Gusenleitner, D., Gestraud, P., Csardi, G., Hochreiter, S., Klambauer, G. and others | The biclustGUI Shiny App | 2016 | manual | ||
Eigner, K., Filik, Y., Klambauer, G., Swoboda, A., Moriggl, R., Stangl, H., Mikula, M. and Roehrl, C. | Impact of endoplasmic reticulum stress on melanoma malignancy | 2016 | Vol. 26Melanoma Research, pp. E37-E37 |
inproceedings | |
Mayr, A., Klambauer, G., Unterthiner, T. and Hochreiter, S. | DeepTox: toxicity prediction using deep learning | 2016 | Frontiers in Environmental Science Vol. 3, pp. 80 |
article | DOI |
Sharma, N., Pulito, C., Klambauer, G., Mattoli, L., Strano, S., Blandino, G., Lucci, J. and Bender, A. | Anti-mesothelioma mechanism of action studies of a complex Cynara scolymus fraction using in silico target prediction and gene expression profiling | 2016 | Planta Medica Vol. 82(S 01), pp. P73 |
article | DOI |
Eduati, F., Mangravite, L.M., Wang, T., Tang, H., Hochreiter, S., Klambauer, G., Mayr, A., Rusyn, I., Wright, F.A., Stolovitzky, G. and others | Prediction of human population responses to toxic compounds by a collaborative competition | 2015 | Nature biotechnology | article | DOI |
Klambauer, G., Wischenbart, M., Mahr, M., Unterthiner, T., Mayr, A. and Hochreiter, S. | Rchemcpp: a web service for structural analoging in ChEMBL, Drugbank and the Connectivity Map | 2015 | Bioinformatics Vol. 31(20), pp. 3392-3394 |
article | |
Klambauer, G., Verbist, B., Vervoort, L., Talloen, W., TheQSTARConsortium, Shkedy, Z., Thas, O., Bender, A., Göhlmann, H.W. and Hochreiter, S. | Using transcriptomics to guide lead optimization in drug discovery projects | 2015 | Drug Discovery Today Vol. 20(5), pp. 505-513 |
article | |
Martin Heusel Djork-Arné Clevert, G.K.A.M.K.S.T.U.S.H. | ELU-Networks - Fast and Accurate CNN Learning on ImageNet | 2015 | International Conference on Computer Vision (ICCV 2015) | inproceedings | |
Unterthiner, T., Mayr, A., Klambauer, G. and Hochreiter, S. | Toxicity prediction using deep learning | 2015 | arXiv preprint arXiv:1503.01445 | article | |
Unterthiner, T., Mayr, A., Klambauer, G., Steijaert, M., Wegner, J.K., Ceulemans, H. and Hochreiter, S. | Aiding Drug Design with Deep Neural Networks | 2014 | Workshop on Machine Learning in Computational Biology, NIPS 2014 | inproceedings | |
Unterthiner, T., Mayr, A., Klambauer, G., Steijaert, M., Wegner, J.K., Ceulemans, H. and Hochreiter, S. | Deep learning as an opportunity in virtual screening | 2014 | Deep Learning and Representation Learning Workshop, NIPS 2014 | inproceedings | |
Unterthiner, T., Mayr, A., Klambauer, G., Steijaert, M., Wegner, J.K., Ceulemans, H. and Hochreiter, S. | Multi-task deep networks for drug target prediction | 2014 | Workshop on Transfer and Multi-Task Learning, NIPS 2014 |
inproceedings | |
Bender, A., Göhlmann, H., Hochreiter, S. and Shkedy, Z. | Computational Methods Aiding Early-Stage Drug Design (Dagstuhl Seminar 13212) | 2013 | Vol. 3(5)Dagstuhl Reports |
inproceedings | |
Clevert, D.-A., Mayr, A., Mitterecker, A., Klambauer, G., Valsesia, A., Forner, K., Tuefferd, M., Talloen, W., Wojcik, J., Göhlmann, H. and others | Increasing the discovery power of-omics studies | 2013 | Systems Biomedicine Vol. 1(2), pp. 84-93 |
article | DOI |
Klambauer, G. | Package ‘cn. mops’ | 2013 | manual | ||
Klambauer, G., Unterthiner, T. and Hochreiter, S. | DEXUS: identifying differential expression in RNA-Seq studies with unknown conditions | 2013 | Nucleic acids research Vol. 41(21), pp. e198 |
article | DOI |
Klambauer, G., biocViews Sequencing, R. and GeneExpression, D. | Package ‘dexus’ | 2013 | manual | ||
Clevert, D.-A., Heusel, M., Mitterecker, A., Talloen, W., Göhlmann, H., Wegner, J., Mayr, A., Klambauer, G. and Hochreiter, S. | Exploiting the Japanese toxicogenomics project for predictive modelling of drug toxicity | 2012 | CAMDA Vol. 2012, pp. 26-9 |
article | |
Karlsson, J., Torreno, O., Ramet, D., Klambauer, G., Cano, M. and Trelles, O. | Enabling large-scale bioinformatics data analysis with cloud computing | 2012 | 2012 IEEE 10th International Symposium on Parallel and Distributed Processing with Applications, pp. 640-645 | inproceedings | |
Klambauer, G., Schwarzbauer, K., Mayr, A., Clevert, D.-A., Mitterecker, A., Bodenhofer, U. and Hochreiter, S. | cn. MOPS: mixture of Poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate | 2012 | Nucleic acids research Vol. 40(9), pp. e69 |
article | DOI |
Mahr, M. and Klambauer, G. | Package ‘Rchemcpp’ | 2012 | manual | ||
Clevert, D.-A., Mitterecker, A., Mayr, A., Klambauer, G., Tuefferd, M., Bondt, A.D., Talloen, W., Göhlmann, H. and Hochreiter, S. | cn. FARMS: a latent variable model to detect copy number variations in microarray data with a low false discovery rate | 2011 | Nucleic acids research Vol. 39(12), pp. e79-e79 |
article | |
Klambauer, G., Schwarzbauer, K., Mayr, A. and Hochreiter, S. | A normalization technique for next generation sequencing experiments | 2010 | Nature Precedings, pp. 1-1 | article | DOI |
Schwarzbauer, K., Klambauer, G., Mayr, A. and Hochreiter, S. | Identifying Copy Number Variations based on Next Generation Sequencing Data by a Mixture of Poisson Model | 2010 | Nature Precedings, pp. 1-1 | article | DOI |
Scientific Challenges
- Tox21 Data Challenge (2014): Winner of the Grand Challenge, Nuclear Receptor Panel, Stress Response Panel, and six of twelve subchallenges. https://tripod.nih.gov/tox21/challenge/leaderboard.jsp https://ncats.nih.gov/news/releases/2015/tox21-challenge-2014-winners (Teams ``Bioinf@JKU'' and ``Bioinf@JKU-ensembleX'', Method DeepTox)
- NIEHS-NCATS-UNC DREAM Toxicogenetics Challenge (2013): Best performing method at the prediction of average cytotoxicity. https://www.synapse.org/#!Synapse:syn1761567/wiki/60840 (Team ``Austria'')
Supervised Master Theses
- Backward dynamics of self-normalizing networks, Pieter-Jan Hoedt, PDF
- Generative RNN models for molecular strings with biological activity profiles, ongoing
- Generative adversarial networks for molecular graphs, ongoing
- Improving image-based compound activity prediction with convolutional neural networks, ongoing
- Deep Learning for Drug Combination Synergy Prediction
- The Maximum Common Subgraph Kernel For Predicting Kinase Inhibitors
- Panelcn.MOPS reaches clinical standards as a copy number variation detection tool for targeted panel sequencing
- Accurate detection of tumor copy number variations in high-throughput sequencing data
- Detecting CNVs in the 1000 Genomes Project Data Using cn.MOPS and Relating the Results to Transcriptome Sequencing Data
Education and personal data
- Since 2019: Tenure-track professhorship at Johannes Kepler University Linz
- Since 2014: Post-Doc Researcher at Johannes Kepler University Linz
- 2014: Award of Excellence of the Austrian Ministry of Science
- 04/2014: PhD in Bioinformatics (JKU Linz)
- 2012: Austrian Life Science Award
- 2009-2014: Researcher at Johannes Kepler University Linz
- 2007-2009: Secondary School Teacher, BORG Linz and BORG Bad Leonfelden
- 07/2007: MSc in Mathematics and Biology (University of Vienna)
- 09/2006-02/2007: Studies Abroad, Universita degli Studi, Padova
- 2001-2007: Mathematics and Biology Diploma-Studies, University of Vienna
Research Topics
- Deep Learning
- Self-normalizing neural networks
- Convolutional neural networks
- Recurrent neural networks and reinforcement learning
- Machine learning methods for drug discovery
- Life science data analysis and bioinformatics
Teaching
- 2020: Deep Learning and Neural Nets II, Lecturer, Johannes Kepler University, Linz, Austria.
- 2020: Artificial Intelligence in Life Sciences, Lecturer, Johannes Kepler University, Linz, Austria.
- 2019: Deep Learning and Neural Nets I, Lecturer, Johannes Kepler University, Linz, Austria.
- 2019: Sequence analysis and phylogenetics, Lecturer, Johannes Kepler University, Linz, Austria.
- 2019: Introduction to Machine Learning, Lecturer, Johannes Kepler University, Linz, Austria.
- 2019: Artificial Intelligence in Life Sciences, Lecturer, Johannes Kepler University, Linz, Austria.
- 2018: Sequence analysis and phylogenetics, Lecturer, Johannes Kepler University, Linz, Austria.
- 2018: Introduction to Machine Learning, Lecturer, Johannes Kepler University, Linz, Austria.
- 2018: Artificial Intelligence in Life Sciences, Lecturer, Johannes Kepler University, Linz, Austria.
- 2017: Special Topics on Bioinformatics: Population genetics, Lecturer, Johannes Kepler University, Linz, Austria.
- 2016: Special Topics on Bioinformatics: Population genetics, Lecturer, Johannes Kepler University, Linz, Austria.
- 2014: Special Topics on Bioinformatics: Population genetics, Lecturer, Johannes Kepler University, Linz, Austria.
- 2013: Special Topics on Bioinformatics: Population genetics, Lecturer, Johannes Kepler University, Linz, Austria.
- 2012/2013: Sequence Analysis and Phylogenetics, Lecturer, Johannes Kepler University, Linz, Austria.
- 2012: Special Topics on Bioinformatics: Population genetics, Lecturer, Johannes Kepler University, Linz, Austria.
- 2011/2012: Exercises in Bioinformatics I: Sequence Analysis and Phylogenetics, Lecturer, Johannes Kepler University, Linz, Austria.
- 2011: Special Topics on Bioinformatics: Population genetics, Lecturer, Johannes Kepler University, Linz, Austria.
- 2010/2011: Exercises in Bioinformatics I: Sequence Analysis and Phylogenetics, Lecturer, Johannes Kepler University, Linz, Austria.
- 2010: Special Topics on Bioinformatics: Population genetics, Lecturer, Johannes Kepler University, Linz, Austria.
- 2009/2010: Exercises in Bioinformatics I: Sequence Analysis and Phylogenetics, Lecturer, Johannes Kepler University, Linz, Austria.
- 2008-2009: Mathematics and Biology, Secondary School Teacher, BORG Linz, Linz
- 2007-2008: Mathematics and Biology, Secondary School Teacher, BORG Bad Leonfelden, Bad Leonfelden
Trivia: My Erdös number is 4 and my Bacon index is also 4 (see here).