Klambauer

Günter Klambauer

phone: +43-732-2468-4520
fax: +43-732-2468-4539

e-mail: klambauer@bioinf.jku.at

Room: S3 327 (Computer Science Building, Science Park 3)



Curriculum Vitae: PDF

Consulting hours (Sprechstunde)

Upon email request.

Current

Selected Publications

See also [Google Scholar]

Publication list

AuthorTitleYearJournal/ProceedingsReftypeDOI/URL
Akbar, R., Robert, P.A., Weber, C.R., Widrich, M., Frank, R., Pavlović, M., Scheffer, L., Chernigovskaya, M., Snapkov, I., Slabodkin, A. and others In silico proof of principle of machine learning-based antibody design at unconstrained scale 2021 BioRXiV  article  
Fürst, A., Rumetshofer, E., Tran, V., Ramsauer, H., Tang, F., Lehner, J., Kreil, D., Kopp, M., Klambauer, G., Bitto-Nemling, A. and others CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP 2021 arXiv preprint arXiv:2110.11316  article  
Hoedt, P.-J., Kratzert, F., Klotz, D., Halmich, C., Holzleitner, M., Nearing, G., Hochreiter, S. and Klambauer, G. MC-LSTM: Mass-Conserving LSTM 2021 Proceedings of the 38th International Conference on Machine Learning
Vol. 139, pp. 4275-4286 
article  
Kimeswenger, S., Tschandl, P., Noack, P., Hofmarcher, M., Rumetshofer, E., Kindermann, H., Silye, R., Hochreiter, S., Kaltenbrunner, M., Guenova, E. and others Artificial neural networks and pathologists recognize basal cell carcinomas based on different histological patterns 2021 Modern Pathology
Vol. 34(5), pp. 895-903 
article  
Klotz, D., Kratzert, F., Gauch, M., Sampson, A.K., Klambauer, G., Brandstetter, J., Hochreiter, S. and Nearing, G. Uncertainty estimation with LSTM based rainfall-runoff models 2021 EGU General Assembly Conference Abstracts, pp. EGU21-13308  inproceedings  
Klotz, D., Kratzert, F., Gauch, M., Keefe Sampson, A., Brandstetter, J., Klambauer, G., Hochreiter, S. and Nearing, G. Uncertainty Estimation with Deep Learning for Rainfall--Runoff Modelling 2021 Hydrology and Earth System Sciences Discussions, pp. 1-32  article  
Mercado, R., Rastemo, T., Lindelöf, E., Klambauer, G., Engkvist, O., Chen, H. and Bjerrum, E.J. Graph networks for molecular design 2021 Machine Learning: Science and Technology
Vol. 2(2), pp. 025023 
article  
Ramsauer, H., Schäfl, B., Lehner, J., Seidl, P., Widrich, M., Gruber, L., Holzleitner, M., Adler, T., Kreil, D., Kopp, M.K., Klambauer, G., Brandstetter, J. and Hochreiter, S. Hopfield networks is all you need 2021 International Conference on Learning Representations  article  
Robert, P.A., Akbar, R., Frank, R., Pavlović, M., Widrich, M., Snapkov, I., Chernigovskaya, M., Scheffer, L., Slabodkin, A., Mehta, B.B. and others One billion synthetic 3D-antibody-antigen complexes enable unconstrained machine-learning formalized investigation of antibody specificity prediction 2021 BioRXiV  article  
Roland, T., Boeck, C., Tschoellitsch, T., Maletzky, A., Hochreiter, S., Meier, J. and Klambauer, G. Machine Learning based COVID-19 Diagnosis from Blood Tests with Robustness to Domain Shifts 2021 medRxiv  article  
Schimunek, J., Friedrich, L., Kuhn, D., Hochreiter, S., Rippmann, F. and Klambauer, G. Comparative assessment of interpretability methods of deep activity models for hERG 2021 19th International Workshop on (Q)SAR in Environmental and Health Sciences  conference  
Schimunek, J., Friedrich, L., Kuhn, D., Rippmann, F., Hochreiter, S. and Klambauer, G. A generalized framework for embedding-based few-shot learning methods in drug discovery 2021 ELLIS Machine Learning for Molecule Discovery Workshop  conference PDF 
Seidl, P., Halmich, C., Mayr, A., Vall, A., Ruch, P., Hochreiter, S. and Klambauer, G. Benchmarking recent Deep Learning methods on the extended Tox21 data set 2021 19th International Workshop on (Q)SAR in Environmental and Health Sciences  conference  
Seidl, P., Renz, P., Dyubankova, N., Neves, P., Verhoeven, J., Segler, M., Wegner, J.K., Hochreiter, S. and Klambauer, G. Modern Hopfield Networks for Few-and Zero-Shot Reaction Template Prediction 2021 arXiv preprint arXiv:2104.03279  article  
Vall, A., Hochreiter, S. and Klambauer, G. BioassayCLR: Prediction of biological activity for novel bioassays based on rich textual descriptions 2021 ELLIS Machine Learning for Molecule Discovery Workshop  conference PDF 
Vall, A., Sabnis, Y., Shi, J., Class, R., Hochreiter, S. and Klambauer, G. The promise of AI for DILI prediction 2021 Frontiers in Artificial Intelligence
Vol. 4, pp. 15 
article  
Adler, T., Brandstetter, J., Widrich, M., Mayr, A., Kreil, D., Kopp, M., Klambauer, G. and Hochreiter, S. Cross-Domain Few-Shot Learning by Representation Fusion 2020 arXiv preprint arXiv:2010.06498  article  
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B. and Hochreiter, S. Two time-scale update rule for training GANs 2020   misc  
Hofmarcher, M., Mayr, A., Rumetshofer, E., Ruch, P., Renz, P., Schimunek, J., Seidl, P., Vall, A., Widrich, M., Hochreiter, S. and others Large-scale ligand-based virtual screening for SARS-CoV-2 inhibitors using deep neural networks 2020 Available at SSRN 3561442 techreport DOI  
Klotz, D., Kratzert, F., Sampson, A.K., Klambauer, G., Hochreiter, S. and Nearing, G. Learning from mistakes: Online updating for deep learning models. 2020 EGU General Assembly Conference Abstracts, pp. 8853  inproceedings  
Kratzert, F., Klotz, D., Klambauer, G., Nearing, G. and Hochreiter, S. The performance of LSTM models from basin to continental scales 2020 Copernicus Meetings  techreport  
Kratzert, F., Klotz, D., Shalev, G., Nevo, S., Klambauer, G., Nearing, G. and Hochreiter, S. Towards deep learning based flood forecasting for ungauged basins 2020 EGU General Assembly Conference Abstracts, pp. 8932  inproceedings  
Kratzert, F., Klotz, D., Shalev, G., Nevo, S., Klambauer, G., Nearing, G. and Hochreiter, S. Towards deep learning based flood forecasting for ungauged basins 2020 Copernicus Meetings  techreport  
Mayr, A., Klambauer, G., Unterthiner, T. and Hochreiter, S. The LSC Benchmark Dataset: Technical Appendix and Partial Reanalysis 2020 LIT AI Lab & Institute for Machine Learning, Johannes Kepler University Linz  techreport  
Mercado, R., Rastemo, T., Lindelöf, E., Klambauer, G., Engkvist, O., Chen, H. and Bjerrum, E.J. Practical notes on building molecular graph generative models 2020 Applied AI Letters
Vol. 1(2) 
article  
Nearing, G., Kratzert, F., Klotz, D., Hoedt, P.-J., Klambauer, G., Hochreiter, S., Gupta, H., Nevo, S. and Matias, Y. A Deep Learning Architecture for Conservative Dynamical Systems: Application to Rainfall-Runoff Modeling 2020 AI for Earth Sciences Workshop at NEURIPS  inproceedings  
Ramsauer, H., Schäfl, B., Lehner, J., Seidl, P., Widrich, M., Gruber, L., Holzleitner, M., Pavlović, M., Sandve, G.K., Greiff, V. and others Hopfield networks is all you need 2020 arXiv preprint arXiv:2008.02217  article  
Renz, P., Van Rompaey, D., Wegner, J.K., Hochreiter, S. and Klambauer, G. On failure modes in molecule generation and optimization 2020 Drug Discovery Today: Technologies  article  
Sturm, N., Mayr, A., Le Van, T., Chupakhin, V., Ceulemans, H., Wegner, J., Golib-Dzib, J.-F., Jeliazkova, N., Vandriessche, Y., Böhm, S. and others Industry-scale application and evaluation of deep learning for drug target prediction 2020 Journal of Cheminformatics
Vol. 12(1), pp. 1-13 
article DOI  
Widrich, M., Schäfl, B., Pavlović, M., Sandve, G.K., Hochreiter, S., Greiff, V. and Klambauer, G. DeepRC: Immune repertoire classification with attention-based deep massive multiple instance learning 2020 bioRxiv  article DOI  
Widrich, M., Schäfl, B., Ramsauer, H., Pavlović, M., Gruber, L., Holzleitner, M., Brandstetter, J., Sandve, G.K., Greiff, V., Hochreiter, S. and others Modern Hopfield networks and attention for immune repertoire classification 2020 arXiv preprint arXiv:2007.13505  article  
Hofmarcher, M., Rumetshofer, E., Clevert, D.-A., Hochreiter, S. and Klambauer, G. Accurate prediction of biological assays with high-throughput microscopy images and convolutional networks 2019 Journal of chemical information and modeling
Vol. 59(3), pp. 1163-1171 
article DOI  
Hofmarcher, M., Unterthiner, T., Arjona-Medina, J., Klambauer, G., Hochreiter, S. and Nessler, B. Visual scene understanding for autonomous driving using semantic segmentation 2019 Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, pp. 285-296  incollection DOI  
Kimeswenger, S., Klambauer, G., Lang, G., Hofmarcher, M., Tschandl, P., Sinz, C., Petronio, G., Silye, R., Kittler, H. and Hötzenecker, W. Neural networks detect cutaneous basal cell carcinomas in histological sections (452) 2019 Journal of Investigative Dermatology
Vol. 139(9), pp. S292 
article  
Kimeswenger, S., Rumetshofer, E., Hofmarcher, M., Tschandl, P., Kittler, H., Hochreiter, S., Hötzenecker, W. and Klambauer, G. Detecting cutaneous basal cell carcinomas in ultra-high resolution and weakly labelled histopathological images 2019 Workshop on Machine Learning for Health (ML4H at 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.  article  
Kimeswenger, S., Klambauer, G., Lang, G., Silye, R. and Hotzenecker, W. The power of neural networks to detect cutaneous basal cell carcinomas in histological sections 2019
Vol. 28(3)Experimental Dermatology, pp. E38-E38 
inproceedings  
Klotz, D., Kratzert, F., Herrnegger, M., Hochreiter, S. and Klambauer, G. Towards the quantification of uncertainty for deep learning based rainfall-runoff models. 2019
Vol. 21Geophysical Research Abstracts 
inproceedings  
Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S. and Nearing, G. Benchmarking a catchment-aware Long Short-Term Memory Network (LSTM) for large-scale hydrological modeling 2019 arXiv preprint arXiv:1907.08456  article DOI  
Kratzert, F., Klotz, D., Klambauer, G., Hochreiter, S. and Nearing, G.S. Large-Scale Rainfall-Runoff Modeling using the Long Short-Term Memory Network 2019 AGU Fall Meeting 2019  inproceedings  
Kratzert, F., Herrnegger, M., Klotz, D., Hochreiter, S. and Klambauer, G. NeuralHydrology--Interpreting LSTMs in Hydrology 2019 Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, pp. 347-362  incollection DOI  
Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S. and Nearing, G. Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets. 2019 Hydrology & Earth System Sciences
Vol. 23(12) 
article DOI  
Kratzert, F., Klotz, D., Herrnegger, M., Hochreiter, S. and Klambauer, G. Using large data sets towards generating a catchment aware hydrological model for global applications. 2019
Vol. 21Geophysical Research Abstracts 
inproceedings  
Nearing, G., Kratzert, F., Klotz, D., Klambauer, G. and Hochreiter, S. Large-Scale Rainfall-Runoff Modeling using the Long Short-Term Memory Network 2019 AGUFM
Vol. 2019, pp. H53B-05 
article  
Preuer, K., Klambauer, G., Rippmann, F., Hochreiter, S. and Unterthiner, T. Interpretable deep learning in drug discovery 2019 Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, pp. 331-345  incollection DOI  
Renz, P., Hochreiter, S. and Klambauer, G. Uncertainty Estimation Methods to Support Decision-Making in Early Phases of Drug Discovery 2019 Workshop on Safety and Robustness in Decision-making at 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.  inproceedings [PDF] 
Vondra, S., Kunihs, V., Eberhart, T., Eigner, K., Bauer, R., Haslinger, P., Haider, S., Windsperger, K., Klambauer, G., Schütz, B. and others Metabolism of cholesterol and progesterone is differentially regulated in primary trophoblastic subtypes and might be disturbed in recurrent miscarriages 2019 Journal of lipid research
Vol. 60(11), pp. 1922-1934 
article DOI  
Kratzert, F., Herrnegger, M., Klotz, D., Hochreiter, S. and Klambauer, G. Do internals of neural networks make sense in the context of hydrology? 2018 AGUFM
Vol. 2018, pp. H13B-06 
article  
Mayr, A., Klambauer, G., Unterthiner, T., Steijaert, M., Wegner, J.K., Ceulemans, H., Clevert, D.-A. and Hochreiter, S. Large-scale comparison of machine learning methods for drug target prediction on ChEMBL 2018 Chemical science
Vol. 9(24), pp. 5441-5451 
article DOI  
Hoedt, P.J., Hochreiter, S., and Klambauer, G. Characterising activation functions by their backward dynamics around forward fixed points 2018
Critiquing and Correcting Trends in Machine Learning NeurIPS 2018 Workshop  
article [PDF] 
Povysil, G., Tzika, A., Vogt, J., Haunschmid, V., Messiaen, L., Zschocke, J., Klambauer, G., Hochreiter, S. and Wimmer, K. panelcn. MOPS: CNV detection in targeted NGS panel data for clinical diagnostics 2018
Vol. 26EUROPEAN JOURNAL OF HUMAN GENETICS, pp. 698-698 
inproceedings  
Preuer, K., Renz, P., Unterthiner, T., Hochreiter, S. and Klambauer, G. Fréchet ChemblNet Distance: A metric for generative models for molecules 2018 arXiv preprint arXiv:1803.09518  article  
Preuer, K., Renz, P., Unterthiner, T., Hochreiter, S. and Klambauer, G. Fréchet ChemNet distance: a metric for generative models for molecules in drug discovery 2018 Journal of chemical information and modeling
Vol. 58(9), pp. 1736-1741 
article DOI  
Preuer, K., Lewis, R.P., Hochreiter, S., Bender, A., Bulusu, K.C. and Klambauer, G. DeepSynergy: predicting anti-cancer drug synergy with Deep Learning 2018 Bioinformatics
Vol. 34(9), pp. 1538-1546 
article DOI  
Preuer, K., Renz, P., Unterthiner, T., Hochreiter, S. and Klambauer, G. Fréchet ChemNet distance: a metric for generative models for molecules in drug discovery 2018 Journal of chemical information and modeling
Vol. 58(9), pp. 1736-1741 
article DOI  
Rumetshofer, E., Hofmarcher, M., Röhrl, C., Hochreiter, S. and Klambauer, G. Human-level protein localization with convolutional neural networks 2018 International Conference on Learning Representations  inproceedings  
Simm, J., Klambauer, G., Arany, A., Steijaert, M., Wegner, J.K., Gustin, E., Chupakhin, V., Chong, Y.T., Vialard, J., Buijnsters, P. and others Repurposed high-throughput image assays enables biological activity prediction for drug discovery 2018 Cell Chemical Biology, pp. 108399  article  
Sturm, N., Sun, J., Vandriessche, Y., Mayr, A., Klambauer, G., Carlsson, L., Engkvist, O. and Chen, H. Application of bioactivity profile-based fingerprints for building machine learning models 2018 Journal of chemical information and modeling
Vol. 59(3), pp. 962-972 
article DOI  
Unterthiner, T., Nessler, B., Seward, C., Klambauer, G., Heusel, M., Ramsauer, H. and Hochreiter, S. Coulomb GANs: Provably optimal nash equilibria via potential fields 2018 International Conference on Learning Representations 2018  article  
Eigner, K., Filik, Y., Mark, F., Schütz, B., Klambauer, G., Moriggl, R., Hengstschläger, M., Stangl, H., Mikula, M. and Röhrl, C. The unfolded protein response impacts melanoma progression by enhancing FGF expression and can be antagonized by a chemical chaperone 2017 Scientific reports
Vol. 7(1), pp. 1-12 
article DOI  
Klambauer, G., Unterthiner, T., Mayr, A. and Hochreiter, S. Self-Normalizing Neural Networks 2017 Advances in Neural Information Processing Systems 30, pp. 972-981  inproceedings  
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Klambauer, G. and Hochreiter, S. GANs Trained by a Two Time-Scale Update Rule Converge to a Nash Equilibrium 2017 https://arxiv.org/abs/1706.08500v4  article [PDF]
Povysil, G., Tzika, A., Vogt, J., Haunschmid, V., Messiaen, L., Zschocke, J., Klambauer, G., Hochreiter, S. and Wimmer, K. panelcn. MOPS: Copy-number detection in targeted NGS panel data for clinical diagnostics 2017 Human mutation
Vol. 38(7), pp. 889-897 
article DOI  
Wittwehr, C., Aladjov, H., Ankley, G., Byrne, H.J., de Knecht, J., Heinzle, E., Klambauer, G., Landesmann, B., Luijten, M., MacKay, C. and others How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology 2017 Toxicological Sciences
Vol. 155(2), pp. 326-336 
article DOI  
De Troyer, E., Sengupta, R., Martin Otava, J.D., Zhang, S.K., Culhane, A., Gusenleitner, D., Gestraud, P., Csardi, G., Hochreiter, S., Klambauer, G. and others The biclustGUI Shiny App 2016   manual  
Eigner, K., Filik, Y., Klambauer, G., Swoboda, A., Moriggl, R., Stangl, H., Mikula, M. and Roehrl, C. Impact of endoplasmic reticulum stress on melanoma malignancy 2016
Vol. 26Melanoma Research, pp. E37-E37 
inproceedings  
Mayr, A., Klambauer, G., Unterthiner, T. and Hochreiter, S. DeepTox: toxicity prediction using deep learning 2016 Frontiers in Environmental Science
Vol. 3, pp. 80 
article DOI  
Sharma, N., Pulito, C., Klambauer, G., Mattoli, L., Strano, S., Blandino, G., Lucci, J. and Bender, A. Anti-mesothelioma mechanism of action studies of a complex Cynara scolymus fraction using in silico target prediction and gene expression profiling 2016 Planta Medica
Vol. 82(S 01), pp. P73 
article DOI  
Eduati, F., Mangravite, L.M., Wang, T., Tang, H., Hochreiter, S., Klambauer, G., Mayr, A., Rusyn, I., Wright, F.A., Stolovitzky, G. and others Prediction of human population responses to toxic compounds by a collaborative competition 2015 Nature biotechnology  article DOI  
Klambauer, G., Wischenbart, M., Mahr, M., Unterthiner, T., Mayr, A. and Hochreiter, S. Rchemcpp: a web service for structural analoging in ChEMBL, Drugbank and the Connectivity Map 2015 Bioinformatics
Vol. 31(20), pp. 3392-3394 
article  
Klambauer, G., Verbist, B., Vervoort, L., Talloen, W., TheQSTARConsortium, Shkedy, Z., Thas, O., Bender, A., Göhlmann, H.W. and Hochreiter, S. Using transcriptomics to guide lead optimization in drug discovery projects 2015 Drug Discovery Today
Vol. 20(5), pp. 505-513 
article  
Martin Heusel Djork-Arné Clevert, G.K.A.M.K.S.T.U.S.H. ELU-Networks - Fast and Accurate CNN Learning on ImageNet 2015 International Conference on Computer Vision (ICCV 2015)  inproceedings  
Unterthiner, T., Mayr, A., Klambauer, G. and Hochreiter, S. Toxicity prediction using deep learning 2015 arXiv preprint arXiv:1503.01445  article  
Unterthiner, T., Mayr, A., Klambauer, G., Steijaert, M., Wegner, J.K., Ceulemans, H. and Hochreiter, S. Aiding Drug Design with Deep Neural Networks 2014 Workshop on Machine Learning in Computational Biology, NIPS 2014  inproceedings  
Unterthiner, T., Mayr, A., Klambauer, G., Steijaert, M., Wegner, J.K., Ceulemans, H. and Hochreiter, S. Deep learning as an opportunity in virtual screening 2014 Deep Learning and Representation Learning Workshop, NIPS 2014  inproceedings  
Unterthiner, T., Mayr, A., Klambauer, G., Steijaert, M., Wegner, J.K., Ceulemans, H. and Hochreiter, S. Multi-task deep networks for drug target prediction 2014
Workshop on Transfer and Multi-Task Learning, NIPS 2014 
inproceedings  
Bender, A., Göhlmann, H., Hochreiter, S. and Shkedy, Z. Computational Methods Aiding Early-Stage Drug Design (Dagstuhl Seminar 13212) 2013
Vol. 3(5)Dagstuhl Reports 
inproceedings  
Clevert, D.-A., Mayr, A., Mitterecker, A., Klambauer, G., Valsesia, A., Forner, K., Tuefferd, M., Talloen, W., Wojcik, J., Göhlmann, H. and others Increasing the discovery power of-omics studies 2013 Systems Biomedicine
Vol. 1(2), pp. 84-93 
article DOI  
Klambauer, G. Package ‘cn. mops’ 2013   manual  
Klambauer, G., Unterthiner, T. and Hochreiter, S. DEXUS: identifying differential expression in RNA-Seq studies with unknown conditions 2013 Nucleic acids research
Vol. 41(21), pp. e198 
article DOI  
Klambauer, G., biocViews Sequencing, R. and GeneExpression, D. Package ‘dexus’ 2013   manual  
Clevert, D.-A., Heusel, M., Mitterecker, A., Talloen, W., Göhlmann, H., Wegner, J., Mayr, A., Klambauer, G. and Hochreiter, S. Exploiting the Japanese toxicogenomics project for predictive modelling of drug toxicity 2012 CAMDA
Vol. 2012, pp. 26-9 
article  
Karlsson, J., Torreno, O., Ramet, D., Klambauer, G., Cano, M. and Trelles, O. Enabling large-scale bioinformatics data analysis with cloud computing 2012 2012 IEEE 10th International Symposium on Parallel and Distributed Processing with Applications, pp. 640-645  inproceedings  
Klambauer, G., Schwarzbauer, K., Mayr, A., Clevert, D.-A., Mitterecker, A., Bodenhofer, U. and Hochreiter, S. cn. MOPS: mixture of Poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate 2012 Nucleic acids research
Vol. 40(9), pp. e69 
article DOI  
Mahr, M. and Klambauer, G. Package ‘Rchemcpp’ 2012   manual  
Clevert, D.-A., Mitterecker, A., Mayr, A., Klambauer, G., Tuefferd, M., Bondt, A.D., Talloen, W., Göhlmann, H. and Hochreiter, S. cn. FARMS: a latent variable model to detect copy number variations in microarray data with a low false discovery rate 2011 Nucleic acids research
Vol. 39(12), pp. e79-e79 
article  
Klambauer, G., Schwarzbauer, K., Mayr, A. and Hochreiter, S. A normalization technique for next generation sequencing experiments 2010 Nature Precedings, pp. 1-1  article DOI  
Schwarzbauer, K., Klambauer, G., Mayr, A. and Hochreiter, S. Identifying Copy Number Variations based on Next Generation Sequencing Data by a Mixture of Poisson Model 2010 Nature Precedings, pp. 1-1  article DOI  

Scientific Challenges

Supervised Master Theses

Education and personal data

Research Topics

Teaching

Trivia: My Erdös number is 4 and my Bacon index is also 4 (see here).