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Abstract

The strength and weakness of microarray technology can be attributed to the enormous amount
of information it is generating. To fully enhance the benefit of microarray technology for testing
differentially expressed genes and classification, there is a need to minimize the amount of irrel-
evant genes present in microarray data. A major interest is to use probe-level data to call genes
informative or noninformative based on the trade-off between the array-to-array variability and the
measurement error. Existing works in this direction include filtering likely uninformative sets of
hybridization (FLUSH; Calza et al., 2007) and I/NI calls for the exclusion of noninformative genes
using FARMS (I/NI calls; Talloen et al., 2007; Hochreiter et al., 2006). In this paper, we propose
a linear mixed model as a more flexible method that performs equally good as I/NI calls and out-
performs FLUSH. We also introduce other criteria for gene filtering, such as, R2 and intra-cluster
correlation. Additionally, we include some objective criteria based on likelihood ratio testing, the
Akaike information criteria (AIC; Akaike, 1973) and the Bayesian information criterion (BIC;
Schwarz, 1978 ).

Based on the HGU-133A Spiked-in data set, it is shown that the linear mixed model approach
outperforms FLUSH, a method that filters genes based on a quantile regression. The linear model
is equivalent to a factor analysis model when either the factor loadings are set to a constant with
the variance of the latent factor equal to one, or if the factor loadings are set to one together with
unconstrained variance of the latent factor. Filtering based on conditional variance calls a probe set
informative when the intensity of one or more probes is consistent across the arrays, while filtering
using R2 or intra-cluster correlation calls a probe set informative only when average intensity of a
probe set is consistent across the arrays. Filtering based on likelihood ratio test AIC and BIC are
less stringent compared to the other criteria.
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1 Introduction

Microarray technology has been used extensively in biomedical research due
to its ability to simultaneously measure the expression levels of thousands of
genes in a biological sample. The strength and weakness of microarray tech-
nology can be attributed to the enormous amount of information which is
generating. Not all genes are expected to be informative. First, many genes
are not expressed at biologically meaningful or at detectable levels. Most
tissues express only 30 - 40% of their genes (Su et al., 2002). Second, even
among the expressed genes, only a very small fraction is expected to be differ-
entially expressed under different experimental conditions (Calza et al., 2007).
The noisy genes with irrelevant variation often lead to false positives in the
identification of the differentially expressed genes (Dudoit et al., 2002).

Given the importance of gene filtering, two methods have recently been
proposed to assess the signal-to-noise ratio for every probe set. Talloen et al.
(2007) proposed a filtering method based on the informative or non-informative
calls (I/NI Calls) for probe sets. The I/NI Calls makes use of the concept of
factor analysis, where probes in a probe set are assumed to measure the same
latent variable (that is, the true expression level of a gene). Conditional on
the observed data, the variance of the estimated latent variable should be
less than 0.5 for the probe set to be called informative. The I/NI Calls is
based on the factor analysis for robust microarray summarization (FARMS)
method proposed by Hochreiter et al. (2006). Calza et al. (2007) proposed
the Filtering Likely Uninformative Sets of Hybridizations (FLUSH) method.
In contrast to the I/NI Calls, the FLUSH method is based on a probe set-
specific linear model, where probes and arrays are treated as fixed effects. The
FLUSH method captures the array-to-array variability with a Chi-squared
statistic, expressed as a function of array-specific effects and its covariance
matrix. The FLUSH eventually calls a gene informative based on a quantile
regression comparing the array-to-array variability and the measurement error.

In this paper, we propose a gene filtering method based on a linear
mixed model. We compare its performance to the I/NI Calls (Talloen et al.,
2007) and to the FLUSH (Calza et al., 2007) and demonstrate how it is related
to the factor analysis models. The probe set-specific linear mixed model treats
the array-to-array variability as a random effect, but considers probe-specific
effects to be fixed. The hierarchical formulation of the linear mixed model im-
plies a marginal model, where total variability can be decomposed as the sum
of the array-to-array variability and the measurement error. Hence, the array-
to-array variability can be expressed as a proportion of the total variability
for a probe set. This proportion is referred to as the intra-cluster correlation.
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It is a measure of coherence between intensities measured by different probes
in a probe set. In this paper, we show that the informative or non-informative
calls based on the mixed model and the factor analysis models are equivalent.

This paper is organized as follows: a landmark dataset, the HG-U133A
Spiked-in is presented in Section 2. In Section 3, we discuss the concept of
latent variable models and present several criteria for filtering non-informative
probe sets. The first one is similar to the conditional variance implemented
for the I/NI Calls and uses the proportion of variability explained by the
latent variables from the total variability as a filtering criterion. Other criteria,
such as the AIC (Akaike, 1973), the BIC (Schwarz, 1978), and significance
testing are discussed as well. In Section 4, we compare the performance of
the different methods using the HG-U133A Spiked-in data. In Section 5, we
discuss the settings and results from simulation studies carried out to assess
the performance of the gene filtering methods. In Section 6, we end the paper
with a discussion.

2 HGU-133A Spiked-in Dataset

The Affymetrix HGU-133A Spiked-in dataset is publicly available for the pur-
pose of determining the sensitivity and specificity of various methods for the
analysis of microarray data. The dataset have an advantage over real-life
datasets because the true number of differentially expressed genes are known.
It contains known genes that are spiked-in at 14 different concentrations rang-
ing from 0pM to 512pM, arranged in a Latin squared design. There are 42
arrays and 42 spiked-in probe sets equally distributed over the 14 concen-
trations. In addition to the original spiked-in transcripts, McGee and Chen
(2006) discovered 22 additional probe sets that have similar characteristics as
the spiked-in probe sets. Thus, the HGU-133A spiked-in dataset contains 64
spiked-in probe sets out of the 22,300 probe sets. To clarify, we refer to probe
sets other than the spiked-in as background mixtures. The distribution of the
number of probes per probe sets is presented in Table 1. The majority of the
probe sets have 11 probes. The spiked-in probe sets consist of 52 probe sets
with 11 probes and 12 probe sets with 20 probes. For simplicity, we refer to
probe sets as genes.
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Table 1: Number of probes per probe sets in the HGU-133A spiked-in dataset.

# probes Background Spiked-in Total

8 1 0 1

10 1 0 1

11 21713 52 21765

13 4 0 4

14 4 0 4

15 2 0 2

16 482 0 482

20 28 12 40

69 1 0 1

Total 22236 64 22300

3 Methodology

In this section, we discuss several approaches for gene filtering. We briefly
discuss the FLUSH and the I/NI Calls approaches in Sections 3.1 and 3.2,
respectively. We discuss the mixed model and confirmatory factor analysis
approaches for gene filtering in Sections 3.3 and 3.4.

3.1 Filtering Likely Uninformative Sets of Hybridiza-

tion (FLUSH)

The FLUSH method, proposed by Calza et al. (2007), uses probe level data
to filter genes based on the trade-off between array-to-array variability and
variability due to the measurement error. It models the perfect match (PM)
data (on the log2 scale) after background correction using the so called ideal
mismatch (IMM) to ensure positive values for a specific gene (Calza et al.,
2007). Let PMij and IMMij (i = 1, 2, ..., n; j = 1, 2, ..., K) be the perfect
match and ideal mismatch for the jth probe and the ith array, respectively.
Calza et al. (2007) proposed the following linear model:

log2(PMij − IMMij) = μj + αi + εij, (1)
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where μj and αi are probe- and array-specific effects. The non-informative
genes are those with small array-to-array variability, which is captured by the
χ2 statistic defined as

χ2 = α̂′V̂ −1α̂, (2)

where α̂ is the vector of estimated array-specific effects and V̂ is its
estimated covariance matrix. A non-parametric quantile regression smoothing
with a user-specified quantile is fitted on the χ2 statistic (on the squared root
scale) as a function of the logarithm of residual standard deviation. Likely non-
informative probe sets are probe sets whose χ2 statistics are below the fitted
quantile regression line. It is worth noting that the linear model conceptually
assumes that the probes in a probe set are independent, which is contrary to
the domain knowledge of the Affymetrix platform.

3.2 The I/NI Calls for the Exclusion of Non-informative
Genes Using the FARMS

The I/NI Calls depend on the domain knowledge that all the probes in a probe
set are expected to measure the true expression level of the designated gene.
Since the true expression level is not known, it can be assumed to be a common
latent factor. The factor loadings are determined under the assumption that
the latent factor is normally distributed with mean zero and variance one. The
underlying factor analysis model is given by

log2(PMj) = μj + λjz + εj . (3)

Here, μj is the probe-specific effect, and λj is the factor loading on
probe j (Hochreiter et al., 2006). The common latent factor is denoted as z ∼
N(0, 1), ε ∼ N(0,Ψ) is the measurement error, and Ψ is a diagonal covariance
matrix. ε and z are considered to be independent. Assuming that the probe
set intensities are centered around zero, that is, xj = log2(PMj) − μj, the
marginal distribution of x is given by:

x ∼ N(0, λλ′ + Ψ), (4)

where x is a matrix of probe level data (on log2 scale) after correcting
for the probe-specific effects. The term λλ′+Ψ is the model based covariance
matrix, measuring the total variability in the data. As shown in Talloen
et al. (2007), the conditional variance of the latent factor given the data is
defined as v(z|x) = (1 + λ′Ψ−1λ)−1, which is bounded between 0 and 1.
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Based on a threshold, a gene is called informative if its conditional variance
is less than the specified threshold. The model was implemented for the I/NI
Calls using a Bayesian approach, where they specified N(0, σ2

λ) as a prior
for λ. The consequence of this prior is that the conditional variance of the
latent factor given the data shrinks towards zero for the informative probe
sets. Consequently, a threshold of 0.5 was proposed to discriminate between
informative and non-informative probe sets.

3.3 A Mixed Model Approach

Let PMij be the jth probe intensity of the perfect match measured on array i in
a given probe set. Similar to the approaches of Talloen et al. (2007), Hochreiter
et al. (2006), and Calza et al. (2007), we assume that the log2(PMij) consists
of two sources of variability. The first is the variability due to measurement
error and the second is an array-to-array variability. Therefore, the following
linear mixed model (Verbeke and Molenberghs, 2000) is assumed:

log2(PMij) = μj + bi + εij,

i = 1, · · · , n, j = 1, · · · , k,

(5)

where bi is an array-specific effect, bi ∼ N(0, σ2
b ), μj is a probe-specific

effect, and εij ∼ N(0, σ2
ε). The linear mixed model specified in (5) is a random

intercept model, which can be re-written in matrix notation as

log2(PMi) = Xiμ + Zibi + εi, (6)

where PMi is a vector of probe level data. Xi and Zi are the design
matrices for the fixed effects and the random effects with known covariates,
respectively, μ is a vector of fixed effects of the probes, b = (b1, b2, · · · , bn) is a
vector of the array-specific effects, and ε is a vector of the measurement error.
For our specific setting, the design matrices Xi and Zi are given by

Xi =

⎛
⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0
0 1 · · · 0 0

0 0 · · ·
...

...
0 0 · · · 1 0
0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎠ and Zi =

⎡
⎢⎢⎢⎢⎢⎣

1
1
...
1
1

⎤
⎥⎥⎥⎥⎥⎦ .

The marginal distribution of PMi, i.e., taking into account the two
sources of variability, is a multivariate normal distribution with the covariance
matrix given by
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σ2
bZZ ′ + σ2

εI (Verbeke and Molenberghs, 2000). For a probe set with
k probes, it is a k × k matrix, for which the qpth entry is given by

[
σ2

bZZ ′ + σ2
εI

]
qp

=

{
σ2

b + σ2
ε q = p,

σ2
b q �= p.

Within the mixed model framework, the probe intensities measured on
the same array form a cluster, and it is expected that observations within a
cluster are correlated if they all measure the same true expression levels of
the probe set. The probe set-specific intra-cluster correlation (Verbeke and
Molenberghs, 2000) is given by

ρ =
σ2

b

σ2
b + σ2

ε

. (7)

Note that for the case, in which σ2
b is relatively larger than σ2

ε , i.e., the
array-to-array variability is larger than the measurement error, ρ will be close
to 1; while ρ → 0 when σ2

b << σ2
ε . For the latter, the probes intensities are

independent and there is no coherence within the probe set.
A user-defined threshold is required to call a gene informative or non-

informative using the intra-cluster correlation. Similar to the FLUSH and
the I/NI Calls, such a threshold may not be readily available. An objective
measure for calling a gene informative or non-informative can be based on a
likelihood ratio test. Suppose there are two competing models.

M0 : log2(PMij) = μj + εij,

M1 : log2(PMij) = μj + bi + εij .
(8)

The first model (M0) assumes that probes within in a probe set are
independent; while the later (M1) assumes that the probes within a probe set
are correlated. Note that M0 is nested within M1, i.e., for the case that σ2

b = 0
, M1 reduces to M0. Hence, one can use the likelihood ratio test to test the
corresponding hypotheses

H0 : σ2
b = 0,

H1 : σ2
b > 0.

(9)

Note that testing the hypotheses in (9) is equivalent to testing the
null hypothesis H0 : ρ = 0 versus the alterative H1 : ρ > 0. As argued
by Talloen et al. (2007) and Calza et al. (2007), probe sets with low array-
to-array variability are not likely to carry an important biological signal and
should be excluded from further analysis. Hence, the likelihood ratio test for
the hypotheses formulated in (9) can be used to filter the probe sets. A probe
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set is declared as an informative probe set whenever the null hypothesis in
(9) is rejected. Alternatively, we can use information criteria, such as the
Akaike information criterion, (AIC; Akaike, 1973) and Bayesian information
criterion (BIC; Schwarz, 1978) to select one of the models (either M0 or M1)
that has the best fit to the data. The likelihood ratio test, the AIC, and the
BIC do not rely on a somewhat ad hoc selection of a threshold. To gain a
better understanding of the informative/non-informative calls using the AIC
and the BIC, we propose to calculate the posterior probability for a probe set
to be called informative P (M1|Data) using the information criteria. Following
Burnham and Anderson (2002), the posterior probability based on the AIC
for the models in (8) is defined as

P (M1|Data)AIC =
exp(−1

2
ΔAICM1

)P (M1)∑1
r=0 exp(−1

2
ΔAICMr

)P (Mr)
. (10)

Let AICM1
and AICM0 be the AIC values from models M1 and M0,

respectively. Suppose we defined the minimum AIC from the two models as
AICmin = min(AICM1

, AICM0
). The idea is to calculate the probability for

a probe set to be called informative given the observed data. This probability
depends on the relative loss of information when using model M1 instead of
the more plausible model. The lower the loss, the higher the probability. The
relative loss of information for using model M1 instead of the most plausible
model out of models M1 and M0 is defined as ΔAICM1

= AICM1
−AICmin.

Suppose the minimum of the AIC values from AICM1
and AICM0

is AICM1
,

i.e, AICmin = AICM1
. Then, ΔAICM1

= 0 and there is no loss of infor-
mation for using model M1. Note that P (M1) is the prior probability for a
probe set to be called informative. We assume a priori that a probe set is
equally likely to be called informative or non-informative, which implies that
P (M1) = P (M0) = 0.5. It is expected that an informative probe set will have
a high posterior probability and otherwise for a non-informative probe set.
The posterior probability of the models can similarly be obtained by using the
BIC as well.

3.4 A Confirmatory Factor Analysis Approach

The I/NI Calls proposed by Talloen et al. (2007) is based on a factor anal-
ysis model using the Bayesian approach. We show that gene filtering can
be done by using a confirmatory factor analysis model. Let Σ(θ) denote
the covariance matrix from the confirmatory factor analysis model. Here,
θ = (λ1, · · · , λk, σ

2
z , σ

2
ε) is a vector of unknown variance-covariance compo-
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nents. The first model considered is similar to the factor analysis model used
in the I/NI Calls. We use the same notation as in Section 3.2 and assume that
z ∼ N(0, σ2

z) and ε ∼ N(0, σ2
ε). The implied covariance matrix for this model

is a symmetric matrix given by

Σ(θ) = [σ2
zλ

′λ + σ2
εI]

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ2
zλ1λ1 + σ2

ε σ2
zλ1λ2 · · · σ2

zλ1λk

σ2
zλ2λ1 σ2

zλ2λ2 + σ2
ε · · · σ2

zλ2λk
...

...
. . .

...
σ2

zλkλ1 σ2
zλkλ2 · · · σ2

zλkλk + σ2
ε

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Next, we consider a factor analysis model for which σ2
z = 1. It is easy

to see that under this assumption,

Σ(θ)qp =
[
λ′λ + σ2

εI
]
qp

=

{
λ2

i + σ2
ε q = p,

λiλj q �= p.

We term this model “FA-Free” since λq �= λp. Note that this factor
analysis model is equivalent to the model used in the I/NI Calls, although, it
is fitted in a frequentist way.

The third model we consider is termed “FA-Restricted” since the factor
loading are constrained to be equal for all probes, that is, λq = λp = λ. Under
this assumption, it follows that

Σ(θ)qp =
[
λ2J + σ2

εI
]
qp

=

{
λ2 + σ2

ε q = p,

λ2 q �= p.

Note that this model assumes a constant variance for all probes within a
probe set, and the array-to-array variability is captured by the factor loadings,
since σ2

z = 1. An alternative model is a model that relaxes the assumption
that σ2

z = 1 and assumes z ∼ N(0, σ2
z). This model treats the factor loadings

as an offset variable, that is, λq = λp = 1. Under this assumption, the array-
to-array variability is captured by the variance of the latent factor and the
model based covariance matrix is given by

Σ(θ)qp =
[
σ2

zJ + σ2
εI

]
qp

=

{
σ2

z + σ2
ε q = p,

σ2
z q �= p.

It is easy to see that Σ(θ) from the “FA-Restricted” model is identical
to the covariance matrix of the linear mixed model in (5) with σ2

b = λ2 = σ2
z .

Hence, all models discussed in Sections 3.2, 3.3, and 3.4 belong to the same
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class of models, which use a latent variable (the factor or the random effect)
to capture the array-to-array variability.

3.5 Latent Variable Models Versus Fixed Effects Mod-
els

Interestingly, as pointed out by Verbeke and Molenberghs (2000), the mixed
model in (5) implies a marginal model for PMi, in which

log2(PMi) ∼ N(Xiμ,Σ(Θ)) where Σ(θ)pq =

{
τ 2 + σ2

ε q = p,

τ 2 q �= p,

where τ 2 is the array-specific effect that captures the array-to-array
variability and Xiμ = (μ1, μ2, ..., μk) is a vector of probe-specific fixed effects.
The decomposition of the total variability of the mixed effect model and the
marginal model is identical (i.e, τ 2 = σ2

b ). Note that the marginal model is dif-
ferent from the model of the FLUSH, which treated the arrays as fixed effects
in the linear model. The fixed effects model in the FLUSH assumes that probes
in a probe set are independent. This is implied by the structure of the model-
based covariance matrix. The covariance matrix for the FLUSH is a diagonal
matrix, while that of the marginal model has a compound symmetry struc-
ture with off-diagonal elements corresponding to the array-to-array variability.
Consequently, the inference based on the marginal model for the array-to-array
variability can be performed by comparing between the compound symmetry
covariance matrix and a diagonal covariance matrix. It should be noted that
for the FLUSH, the χ2 statistic does not in any way account for the correlation
between probes in a probe set. However, the formal inference for the FLUSH
approach can be based on general linear hypothesis testing. The main goal
is therefore to test the importance of array-to-array variability in the model.
Suppose one starts with the full model as specified in (1). The idea is to
investigate how much information will be lost by reducing the model to:

log2(PMij − IMMij) = μj + εij. (11)

The null and alternative hypotheses can be stated as:

H0 : Lα = 0, versus H1 : Lα �= 0, (12)

where L is a known matrix and α is a vector of array-specific effects.
The test statistic α̂′L′V −1Lα̂ asymptotically follows a χ2 distribution with
rank(L) as the degrees of freedom. In order to account for extra variability due
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to the estimation of the covariance parameters, the test is often approximated
with an F-test with rank(L) as the numerator degrees of freedom and the
denominator degrees of freedom is estimated from the data. The estimation
can be based on Satterthwaite-type approximation (Verbeke and Molenberghs,
2000). Note that this test statistic is usually reported as a “Type III test” in
the standard software for mixed models, such as SAS procedure mixed and
lme() in R/S+ package nlme.

3.6 Filtering Scores

The latent variable models decompose the total variability into the array-to
array variability and measurement error. This decomposition allows us, similar
to the I/NI Calls, to calculate a probe set-specific filtering score based on the
ratio between the array-to-array variability and measurement error, denoted as
R2. In our setting, once the model-based covariance matrix Σ(θ) is estimated,
the filtering scores can be calculated using the parameter estimates from the
covariance matrix. The filtering scores for the respective models are presented
in Table 2. Note that unlike the conditional variance, the R2 or intra-cluster
correlation (ρ) does not depend on the probe set size (k).

Table 2: Criteria for gene filtering based on different models. The filtering
scores are: conditional variance (v(z|x)), intra-cluster correlation (ρ), R2, and
χ2 statistic (α̂′V̂ −1α̂).

Filtering Scores

Type Model Assumptions v(z|x) R2/ρ

la
te

n
t

I/NI Calls/FA-Free
λi �= λj

σ2
ε

/⎛
⎝ k∑

j=1

λ2

j + σ2

ε

⎞
⎠ k∑

j=1

λ2

j

/⎛
⎝ k∑

j=1

λ2

j + kσ2

ε

⎞
⎠

z ∼ N(0, 1)

FA-Restricted

λi = λj = λ
σ2

ε/
(
kλ2 + σ2

ε

)
λ2

/(
λ2 + σ2

ε

)
z ∼ N(0, 1)

λi = λj = 1
σ2

ε

/(
kσ2

z + σ2
ε

)
σ2

z

/(
σ2

z + σ2
ε

)
z ∼ N(0, σ2

z)

LMM bi ∼ N(0, σ2

b
) σ2

ε

/(
kσ2

b
+ σ2

ε

)
σ2

b

/(
σ2

b
+ σ2

ε

)
Type Model Assumptions χ2 ρ

fi
x
ed Marginal Model ε ∼ N(0, Σ(θ)) σ2

b

/(
σ2

b
+ σ2

ε

)
FLUSH ε ∼ N(0, σ2

ε) α̂′V̂ −1α̂
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4 Application to HGU-133A

The results presented in this paper are based on the log2 transformation of the
probes intensity values after quantile normalization. The analysis is carried
out using only the perfect match (PM) with a Gaussian distribution. We refer
to Hochreiter et al. (2006) for motivation for using only the PM and the choice
of Gaussian distribution for the transformed intensity values. In Table 3, we
present an overview of results for the methods discussed in previous sections. It
can be observed from these results that the proposed linear mixed model out-
performs the FLUSH and performs equally well as the I/NI Calls. Moreover,
the importance of the Bayesian implementation of the factor analysis model
in the I/NI Calls is evidenced when compared with the “FA-Free” model. The
“FA-Free” model calls all probe sets informative, thereby resulting in 100%
false positive rates; while the I/NI Calls results in 0.2% false positives.

Table 3: The summary of the performance of the different methods. The
cut-off for v(z|x) and ρ is 0.5

Criteria Method False Negatives False Positives

quantile reg FLUSH 0.3400 0.4000

LMM 0.0800 0.4000

I/NI 0.0000 0.0020

v(z|x) FA-Free 0.0000 1.0000

FA-Restricted 0.0000 0.2400

FA-Free 0.0000 0.0600

ρ FA-Restricted 0.0000 0.0004

LMM 0.0000 0.0004

4.1 The FLUSH and the Linear Mixed Model

The paradigm of an informative or non-informative call of a gene is hinged
on the relationship between array-to-array variability and variability due to
measurement error. The relationship between array-to-array variability and
measurement error based on the FLUSH and the linear mixed model is pre-

11

Kasim et al.: Informative or Noninformative Calls

Published by The Berkeley Electronic Press, 2010



sented in Figures 1a and 1b, respectively. Both methods show that array-to-
array variability for the spiked-in probe sets is higher than that of the back-
ground mixtures. Also, a higher residual variance is observed for the spiked-in
probe sets. This may be due to the variance-intensity relationship (Hochreiter
et al., 2006). The residual variance (Figure 1c) from the linear mixed model is
higher than that of the FLUSH. This implies that FLUSH underestimates the
variance of the measurement error for both the spiked-in probe sets and the
background mixtures. The informative probe sets are expected to have higher
array-to-array variability than the predicted values from the 60% quantile re-
gression. The plot of the proportion of false negatives (Figure 1d) shows that
both methods result in false negatives. However, the linear mixed model leads
to less false negatives as compared to the FLUSH.

4.2 Confirmatory Factor Analysis Models, the I/NI Calls,
and Linear Mixed Model

We compare results based on the latent variable models. Note that the “FA-
Free” and “FA-Restricted” models are factor analysis models using the fre-
quentist approach.

4.2.1 Conditional Variance

The I/NI Calls defines a probe set as informative based on the proportion of
the total variability associated with the measurement error. This proportion
is referred to as the conditional variance of the latent factor given the observed
data. It is bounded between 0 and 1. The informative genes are those with
small values of the conditional variance and large value for the non-informative
genes. In Figure 2, we present the conditional variance for factor analysis mod-
els and show their relationship with intra-cluster correlation from the linear
mixed model. The histogram of the conditional variance from the I/NI Calls
(Figure 2b) is bimodal. For the conditional variances based on the “FA-Free”
(Figure 2a) and “FA-Restricted” (Figure 2c), the choice of threshold value
may be data dependent. The bimodal distribution for the conditional vari-
ance from the I/NI Calls is due to the shrinkage of the factor loadings towards
zero for the non-informative probe sets.

Since the intra-cluster correlation obtained from the linear mixed model
is based on the relationship between the array-to-array variability and the vari-
ability due to the measurement error, we expect it to be associated with the
conditional variance from the factor analysis models. These relationships are
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Figure 1: Relationship between array-to-array variability and measurement
errors based on the FLUSH and the linear mixed model: (a) array-to-array
variability versus measurement errors obtained from the FLUSH, (b) array-
to-array variability versus measurement errors obtained from the linear mixed
model , (c) estimated measurement errors from the FLUSH versus that of the
linear mixed model, and (d) proportion of false negatives for varying values of
quantile regression

shown in Figures 2d-2f. There is no obvious relationship between the condi-
tional variance from the I/NI Calls and the intra-cluster correlation due to the
zero informative prior placed on the factor loadings using Bayesian approach.
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Figure 2: Distributions of the conditional variance based on the factor analy-
sis models: histogram plot of conditional variance based on (a) the ”FA-Free”
model, (b) the I/NI Calls, (c) the ”FA-Restricted model”; Relationship be-
tween (d) conditional variance from ”FA-Free” model and intra-cluster corre-
lation from the mixed model, (e) conditional variance from the I/NI Calls and
intra-cluster correlation from the mixed model, and (f) conditional variance
from the ”FA-Restricted” model and intra-cluster correlation from the mixed
model.

The effect of such a prior is that the conditional variance for informative and
non-informative probe sets shrinks toward zero and one, respectively. A re-
ciprocal relationship is observed between the conditional variance from the
“FA-Free” model and the intra-cluster correlation. A one-to-one relationship
can be observed between them. However, there are situations, where a value of
intra-cluster correlation corresponds to multiple values of conditional variance.
This is due to the dependence of conditional variance on the number of probes
in a probe set. From all the models, it can be observed that the spiked-in probe
sets have higher intra-cluster correlations and smaller conditional variances.
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4.2.2 Proportion of Variability Explained by the Latent Factor

As an alternative criterion to the conditional variance for the factor analysis
models, we propose to use the proportion of variability in the observed data
explained by the latent factor (denoted by R2). This is equivalent to the intra-
cluster correlation from the linear mixed model. Similar to the conditional
variance, the distributions of R2 for both the “FA-Free” and “FA-Restricted”
models are not the same (3a and 3b). The relationship between R2 and the
intra-cluster correlation are presented in Figures 3c and 3d. The scatter plots
of R2 from the “FA-Restricted” model versus the intra-cluster correlation show,
as expected, a perfect linear relationship between them. As we mentioned in
Section 3.4, the two models are equivalent. This is not the case for the plot
of R2 from the “FA-Free” model and the intra-cluster correlation (Figure 3d).
However, the informative probe sets are those with higher R2 and intra-cluster
correlations.

4.2.3 Proportion of False Negatives and False Positives Based on
Conditional Variance and Intra-cluster Correlation

The plots of the false positive and false negative rates for the latent factor
models using conditional variance are presented in Figures 4a and 4b. The
percentage of false positive (4b) is more pronounced for the “FA-Free” model
and less pronounced for the I/NI Calls (4a). All the models have a similar false
positive rate when the threshold is around 0.05. Especially for the I/NI Calls,
it appears that it does not matter which threshold is used. The proportion
of false negative is zero for a threshold as small as 0.1. The percentages of
false positives and false negatives based on R2 or intra-cluster correlation are
presented in Figures 4c and 4d. The percentages of false positive (4d) are the
same for the “FA-Restricted” and the linear mixed model. Figure 4c shows
zero false negatives for all the methods until a threshold around 0.6.

4.2.4 Informative or Non-informative Probe Sets Based on the
I/NI Calls and Linear Mixed Model

In the previous sections, we establish the relationships between the factor
analysis models and the linear mixed model. In this section, we zoom in on
genes called informative by either the I/NI Calls or linear mixed model using
the conditional variance or intra-cluster correlation with a threshold of 0.5.
The probe level data of an informative probe set and non-informative probe
set identified by both the I/NI Calls and the linear mixed model are presented
in Figures 5a and 5b, respectively. There is a strong coherence between all
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Figure 3: Relationship between R2 from the factor analysis models and the
intra-cluster correlation from the linear mixed model: (a) distribution of R2

from the ”FA-Free” model, (b) distribution of R2 from the ”FA-Restricted”
model, (c) intra-cluster correlation versus R2 from the ”FA-Free” model, (d)
intra-cluster correlation versus R2 from the ”FA-Restricted” model

the probes of the informative probe set. For the non-informative probe set,
there is little or no coherence between the intensity measures of the probes.
To illustrate this further, we present in Table 4 the factor loadings and R2

from the “FA-Free” and “FA-Restricted” models. For the informative probe
set, the latent factor explains about 99% of the variability of all the probes;
while for the non-informative probe set, the proportion of variability in any
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Figure 4: Proportion of false positives and false negatives based on the confir-
matory factor analysis models and the linear mixed model: (a) false negatives
using conditional variance , (b) false positives using conditional variance, (c)
false negatives using R2 or intra-cluster correlation, (d) false positives using
R2 or intra-cluster correlation

of the probe explained by the latent factor is less than 50%. Based on the
“FA-Restricted” model, the proportion of variability explained by the latent
factor for the informative probe set is 99%, and 0% for the non-informative
probe.

For the threshold of 0.5, there are 112 probe sets called informative by
the I/NI Calls and 78 probe sets called informative by the linear mixed model.
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(a) (b)

(c) (d)

Figure 5: Probe level intensities for probe sets called informative or non-
informative by both the I/NI Calls and the linear mixed model: (a) called
informative by both the I/NI Calls and the linear mixed model, (b) called
non-informative by both the I/NI Calls and the linear mixed model, (c) called
informative only by the I/NI Calls, and (d) called informative only by the
mixed model.

In both cases, the informative probe sets include all the spiked-in probe sets.
Examples of probe level data for an informative probe set by either the I/NI
Calls or the linear mixed model are presented in Figures 5c and 5d, respectively.
For the majority of the probes in a probe set called informative by the I/NI
Calls, there is little or no coherence between the arrays; while those called
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Table 4: Factor loadings (λ) and R2 from “FA - Free” and “FA-Restricted”
models for probe sets called informative (I) or non-informative (NI) by both
the I/NI Calls and the linear mixed model.

λ R2

Model Probes I NI I NI

1 2.458 0.022 0.992 0.063

2 2.419 -0. 074 0.992 0.436

3 2.536 -0.064 0.993 0.367

4 2.333 0.025 0.992 0.084

“FA-Free” 5 2.492 -0.061 0.992 0.343

6 2.504 0.031 0.992 0.117

7 2.455 -0.068 0.992 0.394

8 2.417 -0.028 0.991 0.097

9 2.407 0.010 0.991 0.013

10 2.381 0.054 0.992 0.294

11 2.347 0.073 0.991 0.429

“FA-Restricted” 2.416 0 0.991 0

informative by the mixed model appear to depend on the average coherence
within a probe set. To illustrate this further, we present in Table 5 the factor
loadings (λ) and R2 for these probe sets, based on the “FA-Free” and “FA-
Restricted” model. For the probe sets called informative by the I/NI Calls,
the proportion of the variability explained by the latent factor is dominated by
one of the probes within the probe set. For example, the latent factor explains
about 96% of the variability of probe 4 , but less than 2% of the variability
from other probes. For the probe set called informative only by the linear
mixed model, the latent factors explain more than 50% of the variabilities in
the majority of the probes. By looking at the “FA-Restricted” model, it can
be observed that the proportion explained by the latent factor for the probe
set called informative by only the I/NI Calls is less than 1% and more than
50% for the probe sets called informative only by the linear mixed model.

4.3 Likelihood Ratio Test and Information Criteria

The plots of the proportion of false positives and false negatives in the previ-
ous sections indicate that the choice of threshold for the quantile regression,
conditional variance, R2, and intra-cluster correlation may depend on the data
at hand, and are therefore highly subjective. In this section, we consider other
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Table 5: Factor loadings(λ) and R2 from the “FA - Free” and “FA-Restricted”
models for probe sets called informative by either I/NI Calls or the Linear
mixed model.

λ R2

Model Probes I/NI Calls Mixed Model I/NI Calls Mixed Model

1 0.047 0.033 0.108 0.079

2 0.015 -0.048 0.012 0.148

3 0.022 -0.084 0.019 0.349

4 0.068 -0.180 0.963 0.713

“FA-Free” 5 0.040 -0.284 0.081 0.860

6 0.015 -0.268 0.013 0.845

7 0.007 -0.251 0.003 0.827

8 0.011 -0.115 0.006 0.502

9 0.017 -0.279 0.016 0.856

10 0.025 -0.317 0.033 0.884

11 0.022 -0.169 0.027 0.686

“FA-Restricted” 0.072 -0.174 0.084 0.537

criteria, such as using a likelihood ratio test or the AIC, and BIC to call genes
informative or non-informative. To use any of these criteria, two models (M0

and M1 in (8)) are required. The likelihood ratio test is the difference between
the -2loglikelihood obtained from the models M0 and M1. The likelihood ratio
test for testing whether the variance of the random intercept is zero requires
the correction for a boundary problem (Verbeke and Molenberghs, 2000), since
the null hypothesis is tested on the boundary of the parameter space. As a
result, a mixture of χ2

0,1 is used to obtain the p-value. It is observed that the
majority of the probe sets have p-values close to 1. At the 5% level of sig-
nificance, the number of genes called informative is 549, with the Benjamini
and Horchberg procedure (Benjamin and Hochberg, 1995) for multiple test-
ing adjustment. A gene may also be called informative if the model with the
random array effect has the minimum AIC or BIC among the models in (8).
Both criteria account for the goodness of fit and the complexity of each model.
Out of the 22,300 probe sets, 742 and 663 are called informative by using the
AIC and BIC, respectively. Probe sets called informative by either the like-
lihood ratio test or the AIC or the BIC include all the spiked-in probe sets,
which means zero false negative. It is observed that spiked-in probe sets have
small p-values, small conditional variances and high intra-cluster correlation.
Additionally, Figure 6 shows the posterior probability for a probe set to be
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called informative, P (M1|Data), by using the AIC and BIC. The spiked-in
probe sets have posterior probability of 1. When the posterior probability is
compared with the intra-cluster correlation, it is noted that using intra-cluster
correlation of 0.5 as a threshold may be too stringent in real life data where
the intra-cluster correlation of truly informative genes are unknown. There
are genes with intra-cluster correlation between 0.2 and 0.4, which have a
posterior probability of 1. This means for these probe sets, there is strong a
evidence from the data to call them informative. Note that in the case of the
HGU-133A dataset, considering these genes as informative will increase the
number of false positive.
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Figure 6: Plot of the posterior probability of a probe set called informative by
using the AIC and BIC versus the intra-cluster correlation; (a) P (M1|Data)AIC

and (b) P (M1|Data)BIC

5 Simulation Study

Two simulation studies are conducted in order to investigate the performance
of the gene filtering methods, namely, the FLUSH, the I/NI Calls, and the
gene filtering based on the linear mixed model (LMM). The simulation studies
investigates: (1) the performance of the gene filtering methods, (2) the as-
sumption that all probes in a probe set quantify the expression levels of the
same target.
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5.1 Investigation of Performance of Gene Filtering Meth-
ods

This simulation study asseses the performance of the FLUSH, the I/NI Calls,
and the gene filtering based on the linear mixed model under the assumption
that all probes in a probe set quantify the expression levels of the same tar-
get. 100 datasets were generated. Each dataset contains 100 informative and
1900 non-informative probe sets. The probe level data are generated from
a multivariate normal distribution i.e., Yl ∼ N(μl,Σ(Θl), where Yl, μl, and
Σ(Θl) are the probe level data, the probe-specific effects, and the covariance
matrix for probe set l, respectively. Note that the covariance matrix depends
on the parameter vector Θl = {σ2

bl
, σ2

εl
}. To obtain values for μl and σ2

εl
,

100 informative probe sets and 1900 non-informative probe sets are randomly
sampled from the spiked-in dataset. The variance component associated with
array-to-array variability is calculated by

σ2
bl

=

⎧⎪⎨
⎪⎩

ρIσ2
εl

1−ρI
, an informative probe set,

ρNIσ2
εl

1−ρNI
, a non-informative probe set.

Four different types of datasets were generated; (1) a noisy dataset
with ρI = 0.3 and ρNI = 0.1, (2) a weak signal dataset with ρI = 0.55 and
ρNI = 0.1, (3) a strong signal dataset with ρI = 0.9 and ρNI = 0.1 and (4) a
dataset for which ρI = U(0.5, 1) and ρNI = U(0, 0.5). Note that the last type
represent a more realistic scenario, in which the correlation among the probes
is not constant for all informative and non-informative probe set.

5.1.1 Effects of Sample Size n and Probe Set Size k

For each simulation setting, the performance of the gene filtering methods
under increasing sample size/the number of arrays n = (3, 6, 9, 18, 21, 27, 30,
42, 50, 100) or the probe set size k= (8, 10, 12, 14, 16, 20, 30, 40, 50, 69) are
investigated. In order to investigate the effect of sample size, 100 datasets are
generated for each combination of the different types of dataset and the sample
size; the probe set size is fixed at 20. Similarly, to investigate the effect of probe
set size, 100 datasets are generated for each combination of different types of
dataset and probe set size; while the sample size is fixed at 42 (the number of
samples in the spiked-in dataset). We refer to Section 2 of the supplementary
document for an elaborate discussion of the simulation setting and results.
The simulation results for the setting ρI = U(0.5, 1) and ρNI = (0, 0.5) are
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presented in Table 6. For n = 3, the FLUSH method results in 47% and 39%
false negatives and false positives, respectively. The I/NI Calls results in 7%
false negatives and 60% false positives. The linear mixed model results in
33%, 25% and 19% false negatives and 12%, 2% and 2% false positives based
on ρ, AIC and BIC respectively. For n = 100, the FLUSH method results in
46% and 39% false negatives and false positives, respectively. The I/NI Calls
results in 10% false negatives and 1% false positives. The linear mixed model
results in 4%, 0% and 0% false negatives and 3%, 75% and 74% false positives
based on ρ, AIC and BIC, respectively. For the effect of probe set size, when
k = 8, the FLUSH method results in 47% and 39% false negatives and false
positives, respectively. The I/NI Calls results in 20% false negatives and 1%
false positives. The linear mixed model results in 8%, 0% 0 19% false negatives
and 5%, 46% and 44% false positives based on ρ, AIC and BIC respectively.
When k = 100, the FLUSH method results in 48% and 39% false negatives
and false positives, respectively. The I/NI Calls results in 4% false negatives
and 4% false positives. The linear mixed model results in 4%, 0% and 0%
false negatives and 4%, 67% and 66% false positives based on ρ, AIC and
BIC, respectively.

Figures 7a and 7b show the effects of sample size on the proportion
of false negatives and false positives. The I/NI Calls and the linear mixed
model yield fewer false negatives and false positives than the FLUSH method.
However, the linear mixed model using the AIC or the BIC as a filtering score
gives a higher proportion of false positives than the FLUSH method. Note
that the proportion of false negatives decreases with an increase in sample
size. The results of false negatives can be explained by the overlap between
the informative and non-informative probe sets when the probe level data are
generated with intra-cluster correlation in the neighborhood of 0.5.

Figures 7c and 7d show the effects of the probe set size on the pro-
portion of false negatives and false positives. The I/NI Calls and the linear
mixed model give better results than the FLUSH method. The proportion of
false negatives from all the methods decreases with an increase in probe set
size. Note that, though the proportion of false positives from the I/NI Calls
are consistently lower than that of the linear mixed model with intra-cluster
correlation as the filtering score, they increase with an increase in the probe
set size. This suggests that conditional variance used as the filtering score for
the I/NI Calls favours a larger probe set size.
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Table 6: Effect of sample and probe set size on the performance of the gene
filtering methods. ρI = U(0.5, 1) and ρNI = (0, 0.5) for informative and non-
informative probe sets, respectively.

False Negatives False Positives

I/NI LMM I/NI LMM

FLUSH Calls ρ AIC BIC FLUSH Calls ρ AIC BIC

S
a
m

p
le

si
ze

3 0.477 0.073 0.329 0.245 0.188 0.393 0.595 0.119 0.015 0.023

6 0.475 0.107 0.212 0.081 0.077 0.393 0.214 0.093 0.050 0.052

9 0.471 0.117 0.168 0.027 0.028 0.392 0.129 0.079 0.109 0.107

18 0.468 0.112 0.111 0.001 0.001 0.393 0.059 0.059 0.309 0.298

21 0.468 0.114 0.104 0.000 0.000 0.392 0.051 0.057 0.362 0.351

27 0.467 0.103 0.083 0.000 0.000 0.392 0.038 0.051 0.448 0.437

30 0.467 0.109 0.084 0.000 0.000 0.392 0.033 0.047 0.481 0.469

42 0.465 0.109 0.069 0.000 0.000 0.392 0.022 0.041 0.574 0.564

50 0.464 0.109 0.064 0.000 0.000 0.392 0.019 0.039 0.616 0.607

100 0.463 0.101 0.042 0.000 0.000 0.392 0.006 0.028 0.749 0.742

P
ro

b
e

se
t

si
ze

8 0.468 0.197 0.082 0.000 0.000 0.392 0.010 0.049 0.459 0.436

11 0.466 0.160 0.078 0.000 0.000 0.392 0.015 0.047 0.512 0.495

13 0.468 0.141 0.076 0.000 0.000 0.392 0.017 0.046 0.535 0.520

15 0.467 0.133 0.076 0.000 0.000 0.392 0.019 0.044 0.554 0.541

20 0.467 0.112 0.072 0.000 0.000 0.392 0.023 0.043 0.585 0.576

30 0.468 0.096 0.073 0.000 0.000 0.392 0.030 0.043 0.621 0.615

40 0.470 0.083 0.070 0.000 0.000 0.392 0.033 0.041 0.640 0.635

50 0.464 0.053 0.046 0.000 0.000 0.392 0.037 0.042 0.634 0.631

69 0.477 0.041 0.039 0.000 0.000 0.393 0.038 0.040 0.666 0.663

5.2 Investigation of the Assumption that All Probes in
a Probe Set Quantify the Expression Levels of the
Same Target.

In Section 5.1, we assume that probe sets can either be informative or non-
informative. In this section, we investigate the effect of cross-hybridization.
We assume that for an informative probe set, a certain proportion of the probes
(1− p) are non-informative; while p of the probes are informative. Hence, the
proportion of probes that quantify expression level of the same target is p.
The values p = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) are investigated. For
the informative probe sets, p of the probes in a probe set are generated with
ρI and the remaining 1−p of the probes in the same probe set were generated
with ρNI . Note that in this simulation setting the sample size and probe set

size are fixed at 42 and 20.
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Figure 7: Investigation of the performance of gene filtering methods; (a) Effect
of sample size on false negatives, (b) effect of sample size on false positives,
(c) effect of probe set size on false negatives, and (d) effect of probe set size
on false positives.

The results for the settings ρI = 0.9 and ρNI = 0.1, and ρI = U(0.5, 1)
and ρNI = (0, 0.5) are presented in Table 7. The results based on ρI = 0.9 and
ρNI = 0.1 indicate that all the methods correctly identify the informative probe
sets when p ≥ 0.8. However, for the setting ρI = U(0.5, 1) and ρNI = (0, 0.5),
the FLUSH method results in a lower proportion of false negatives than the
I/NI Calls and the linear mixed model for p < 0.5. The I/NI Calls and linear
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Table 7: Effect of cross-hybridization on the performance of the gene filtering
methods.

False Negatives False Positives

I/NI LMM I/NI LMM

p FLUSH Calls ρ AIC BIC FLUSH Calls ρ AIC BIC

ρ
=

(0
.1

0
,
0
.9

0
)

0.1 0.902 1.000 1.000 1.000 1.000 0.415 0.000 0.000 0.001 0.000

0.2 0.814 1.000 1.000 0.990 0.994 0.410 0.000 0.000 0.001 0.001

0.3 0.407 1.000 1.000 0.236 0.295 0.389 0.000 0.000 0.001 0.001

0.4 0.236 1.000 1.000 0.000 0.001 0.380 0.000 0.000 0.001 0.000

0.5 0.252 0.035 1.000 0.000 0.000 0.381 0.000 0.000 0.001 0.001

0.6 0.202 0.000 0.715 0.000 0.000 0.378 0.000 0.000 0.001 0.000

0.7 0.077 0.000 0.002 0.000 0.000 0.372 0.000 0.000 0.001 0.001

0.8 0.000 0.000 0.000 0.000 0.000 0.368 0.000 0.000 0.001 0.001

0.9 0.000 0.000 0.000 0.000 0.000 0.367 0.000 0.000 0.001 0.000

ρ
∼

(U
(0

,0
.5

),
U

(0
.5

,1
.0

))

0.1 0.623 0.992 0.999 0.416 0.434 0.400 0.023 0.042 0.570 0.559

0.2 0.634 0.998 1.000 0.287 0.317 0.401 0.023 0.041 0.570 0.559

0.3 0.642 1.000 1.000 0.142 0.162 0.401 0.022 0.041 0.569 0.559

0.4 0.643 0.994 1.000 0.062 0.073 0.402 0.022 0.041 0.570 0.560

0.5 0.634 0.646 1.000 0.016 0.019 0.401 0.022 0.042 0.570 0.559

0.6 0.618 0.426 0.769 0.003 0.003 0.400 0.023 0.041 0.570 0.559

0.7 0.587 0.277 0.545 0.000 0.000 0.399 0.022 0.041 0.569 0.559

0.8 0.549 0.173 0.330 0.000 0.000 0.396 0.023 0.041 0.569 0.559

0.9 0.509 0.103 0.148 0.000 0.000 0.394 0.022 0.042 0.570 0.559

mixed model treat a probe set with less than half of its probes quantifying the
expression level of its designated gene as non-informative. We refer to Section
3 of the supplementary document for an elaborate discussion of the simulation
setting and results.

6 Discussion

The strength and weakness of microarray technology can be attributed to
the enormous amount of information generated by this technology. To fully
enhance the benefit of microarray technology for testing differentially expressed
genes, there is a need to minimize the amount of irrelevant genes present in
a microarray dataset prior to testing. In this paper, our major interest is to
use the linear mixed model for informative or non-informative calls for gene
expression data.

We propose alternative methods for informative or non-informative
calls based on a linear mixed model with a random intercept and confirmatory
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factor analysis models. The linear mixed model appears to out-performs the
FLUSH method. However, similar to the FLUSH, the linear mixed model re-
sults in both false positive and false negatives when quantile regression is used.
The random intercept linear mixed model performs as well as the I/NI Calls.
Also, the confirmatory factor analysis model is equivalent to a random inter-
cept linear mixed model, when either the factor loadings are set to a constant
with the variance of the latent factor equal to one, or the factor loadings are
set to one with the variance of the latent factor left unconstrained, but non-
negative. In addition, we have shown that informative or non-informative calls
can be made based on formal hypothesis testing, that are more objective com-
pared to an arbitrary cut-off, such as 0.5. Note that the likelihood ratio test
requires corrections for boundary problems and multiplicity. For the spiked-in
data, it is noted that conditional variance and intra-cluster correlation result
in a smaller number of informative genes as compared to the likelihood ratio
test. This is expected since the likelihood ratio test is used to test the null
hypothesis that ρ = 0, while the filtering score uses a cut-off point of ρ = 0.5.

Two simulation studies have been carried out to compare the perfor-
mance of the methods. The first simulation study compares the three methods
under increasing sample size and probe set size. The results indicates that the
I/NI Calls and the linear mixed performed better than the FLUSH method in
terms of both the numbers of false negatives and false positives. This is espe-
cially the case when there is a large array-to-array variability in the dataset.
The second simulation study compares the performance of the methods under
the violation of the assumption that all probes in a probe set quantify the
expression level of the same target. All the three methods result in a high
proportion of false negatives, especially when the proportion of probes that
quantify the expression level of the same target is less than half of the probe
set size.

We have shown that the I/NI Calls, the confirmatory factor analysis
models, and the linear mixed model capture the array-to-array variability using
a latent factor. The difference between these models is that the I/NI Calls
and the “FA-Free” model use the factor loadings to capture array-to-array
variability; while the “FA-Restricted” model and the linear mixed model use
the variance of the latent factor. The I/NI Calls is based on the conditional
variance. We have shown that filtering scores based on the proportion of the
variability explained by the latent factor (R2 and ρ) can be used as well. We
recommend to use the latent variable models, i.e., the I/NI Calls or the linear
mixed model for gene filtering for the Affymetrix microarray platform. Our
reservation for the FLUSH method is based on its violation of the domain
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knowledge of the Affymetrix platform, as well as its empirical results. We
also recommend the use of R2 over the conditional variance as a filtering score
for the I/NI Calls since the conditional variance has the tendency to favor
informative calls for a larger probe set size.
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