
 1

Model-Based Tool Integration -
State of the Art and Future Perspectives1

Elisabeth Kapsammer2, Thomas Reiter2, Wieland Schwinger3

2Information Systems Group (IFS)

Johannes Kepler University Linz, AUSTRIA

3Department of Telecooperation
Johannes Kepler University Linz, AUSTRIA

1 This work has been partly funded by the Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT) under grant FIT-IT-810806.

Abstract
The quality and effectiveness of software development
heavily depends on the underlying tools used for
different phases of the development lifecycle. With the
rise of model-driven development, a proper integration of
modeling tools represents a crucial success factor. At the
same time, the usage of models as the major artifact in
software development allows a new form of
interoperability in terms of model-based tool integration.
Model-based tool integration focuses on the integration
between the tool’s languages metamodels, providing a
proper basis for a later (semi-)automatic model
integration step. The contribution of this paper is to
investigate the current state of the art in model-based tool
integration, to identify and elaborate on promising
concepts and technologies and to point the way to next-
generation tool integration solutions, based on semantic
technologies.

Keywords: Tool Integration, Model, Metamodel,
Semantic Integration, Ontologies

1. INTRODUCTION

Effective software development processes resulting in
high-quality software products require proper tool
support for different phases of the software lifecycle. The
model-driven software development paradigm as, e.g.,
propagated by the OMG with its Model-Driven
Architecture (MDA) places models instead of pure code
in the center of the development process, being used for
different kinds of development tasks. For example, one
could use a special purpose modeling tool for
requirements definition, another one for UML modeling
and a third one for test case generation and simulation
thereof. Employing a series of special-purpose modeling
tools is beneficial, on the one hand since it avoids the
dependency from a huge general purpose tool and its
vendor and on the other hand since it allows to employ
those tools best suited for the special modeling task at
hand. One major pre-requisite is, however, that these

tools are properly integrated, allowing the seamless
exchange of models in-between.
What we are looking for is model-based tool integration,
enabling to facilitate any tool appropriate for the
modeling task at hand (cf. [32], [33], [34]). Model-based
tool integration means that tools are integrated on basis
of metamodels defining syntax and semantics of the
modeling languages supported by the tools. This would
allow to integrate the metamodels once and to apply this
integration solution to any models subsequently,
conforming to these so-called tool metamodels. Thus, the
repetitive effort of ad-hoc model-integration, which is a
cumbersome and error-prone task, could be avoided.
To provide a comprehensive solution for model-based
tool integration, three crucial requirements have to be
fulfilled (cf. also Fig. 1). First, several integration
scenarios should be supported, comprising, e.g.,
translation, modularization, alignment, and merge of
models. Second, it should be possible to integrate models
based on arbitrary metamodels, having only a certain
meta-metamodel in common, such as MOF (Meta Object
Facility) [29]. Third, and probably most important,
transformations between concrete models, which realize
the integration scenarios should be (semi-)automatically
derived from the integrations defined between the
corresponding metamodels. Although still in its infancy,
there are already a few approaches dealing with model-
based tool integration, fulfilling more or less one or the
other requirement (cf., e.g., [35]).
The goal of this paper is to investigate the current state of
the art in model-based tool integration, to identify and
elaborate on promising concepts, approaches, and
technologies and to point the way to next-generation tool
integration solutions, based on semantic technologies. In
Section 2, tool integration is considered from a historical
point of view. Section 3 discusses approaches most
relevant for the purpose of model transformation in the
context of model-driven development. Section 4
investigates promising approaches for the purpose of
semantic integration, especially focusing on ontologies.
Section 5, finally, points to future research by briefly
reporting on a model-based tool integration approach

 2

called ModelCVS, which we are currently realizing in the
course of an industrial project.

2. HISTORY OF TOOL INTEGRATION

Research in tool integration goes back to the so-called
Stoneman Model2 which was proposed at the end of the
70's and summarized by Brown [6] in two categories, the
conceptual level (“what is integration?”) and the
mechanical level (“how do we provide integration?”).
Conceptual level of integration. Concerning conceptual
integration, Wasserman [41] has suggested a
categorization to describe the integration of tools from a
functional point of view comprising integration in terms
of platforms, GUIs, data, control, and processes. Other
categorizations used for characterizing tool integration
comprises depth of integration, varying from exchanging
byte streams to semantics-preserving integration, and the
universal applicability of the integration approach.
Commercial of the shelf (COTS) tools, for example, are
meant to be integrated if they function coherently and
effectively in an environment as a whole, as is the case in
an integrated development environment (IDE).
Mechanical level of integration. The research efforts at
the mechanical level of tool integration (cf., e.g., [22] for
an overview) include (1) a series of standardization
efforts and middleware services like CAIS [27], PCTE
[1], CDIF [14], CORBA3, and OMG’s recent RFP OTIF4
(Open Tool Integration Framework) to support tool
interoperability, (2) architecture models, infrastructures,
and tool suites like the ECMA toaster model [11], the
ToolBus architecture [3], and finally (3) basic tool
integration mechanisms such as data sharing, data
linkage, data interchange, and message passing [35].

Some of these efforts were often grounded in large
initiatives but have not been widely accepted. The
European standardization effort PCTE, e.g., supporting
data integration with a common repository was not
widely adopted in industry, not least because of its
heavyweight architecture and high usage costs. Another
example, CDIF, a standard for model exchange has been
in the meanwhile replaced by MOF. Regarding, e.g., tool
suites, they are often incomplete with respect to the
various development activities requiring tool support, and
most often do not allow to select between “best of class”
tools (apart from promising exceptions like Eclipse5)
[35].

Despite of all these important efforts, tool integration is
still a challenging task, leading most often to hand-
crafted bilateral integration solutions [35]. These
“solutions” suffer from high maintenance overheads not
least in case of evolutions of the underlying data or tools
themselves, are often strongly technology-dependent and,

2 http://www.adahome.com/History/Stoneman/stoneint.htm
3 http://www.omg.org/corba
4 http://www.omg.org/docs/mic/04-08-01.pdf
5 http://www.eclipse.org

most importantly, do not scale. With the advent of
model-driven development (MDD) and in particular the
introduction of OMG’s model-driven architecture (MDA)
[28] new possibilities have been opened up to cope with
these challenges, as described in the next Section.

3. MDA AND MODEL TRANSFORMATIONS

The key idea of MDA is to focus on models instead of
code as the major artefact in software development. This
allows modeling tools to be integrated on basis of the
metamodels of modeling languages supported by the
tools (i.e., the tool metamodels), thus paving the way for
another generation of (meta)model-based tool integration
approaches and providing a basis to overcome the above
mentioned limitations of existing integration approaches.
For this, MDA includes a set of interrelated standards6,
comprising a language for metamodel definition (Meta
Object Facility – MOF), and the MOF-compliant
languages for constraint specification (Object Constraint
Language – OCL), metadata interchange (XML Metadata
Interchange – XMI), and last but most important model
transformation (QVT).

Models

Tool BTool AModeling
Tools

transformingtransformingTransformationtransformingtransformingTransformation

Metamodels
(represented
in terms of MOF)

Class A

Class Z

Class CClass B

Class E

Class E

Class D

Class A

Class Z

Class CClass B

Class E

Class E

Class D

Class A

Class Z

Class CClass B

Class E

Class E

Class D

Class A

Class Z

Class CClass B

Class E

Class E

Class D

MOF

Derivation

Integration Scenarios
Translation
Alignment
Modularization
etc.

Integration Scenarios
Translation
Alignment
Modularization
etc.

Mapping

conforms to conforms to

conforms to conforms to

Figure 1. Model-based Tool Integration – The Big Picture

Model Transformation Languages

Model transformation is one of the major building blocks
in the context of model-based tool integration and a very
active research area. Existing approaches in this area
having been either submitted to OMG’s QVT request for
proposals or being already part of existing MDA tools
range from algorithmic and imperative approaches, via
graph-transformation-based approaches to template
rule-driven, and hybrid approaches [9]. Tratt et al. [38],
e.g., provide an extensible, imperative model
transformation language with some rule-based elements
for pattern matching purposes, whereas Becker et al. [2]

6http://www.omg.org/technology/documents/

modeling_spec_catalog.htm

 3

use purely rule-based mechanisms employing graph-
transformations and generates wrapper for tool
integration following a kind of programming-by-example
approach. Transformation languages such as BOTL7,
allow the definition of modular, rule-based
transformations, with independent rules for sets of
metamodel elements. For a more detailed overview of
such transformation languages cf. [9].

Infrastructures based on Transformation Languages

Based on these several kinds of QVT-like transformation
language proposals, infrastructures and frameworks have
been built for tool integration [35]. For example, WOTIF
(Web-based open tool integration framework)8 uses a
graph-transformation mechanism and realises different
tool integration scenarios (e.g., direct tool integration and
integration via a common metamodel), but requires that
every tool to be integrated supports certain APIs for
installing plugins. GeneralStore [31] being in fact a
MOF-based repository, allows bi-directional
transformations between models, but uses XSLT or ad-
hoc approaches for model transformation, only. Finally,
MDDi, (Model-driven Development Integration Project
of Eclipse)9, although providing some interesting ideas
for model integration in terms of a bus architecture
similar to AMMA (cf. below), is still in its draft proposal
phase.

Deficiencies of pure model transformations. Although
QVT-like model transformation languages are a core
technology for model-based tool integration, existing
proposals are too generic and lack appropriate abstraction
mechanisms for different kinds of model integration
scenarios, which are highly needed in practice and well-
known from other research areas such as federated and
multi database systems [36]. Such integration scenarios
would require a series of basic model transformations
which will simply not scale up when manually specified
for complex models.

Abstraction Mechanisms for Model Integration

There are only few approaches providing abstraction
mechanisms in terms of, e.g., high-level integration
operators or modularisation techniques in the areas of
model management and model integration as well as in
the area of aspect-oriented modeling which are described
in the following in more detail.
Rondo. The generic model management initiative from
Bernstein et al. [25] provides a prototypical
implementation called Rondo, which aims at keeping the
matching of large XML schemata scalable. An approach
to matching is introduced that operates on fragments of a
large schema to lower the complexity of matching tasks.
Besides this modularisation, model management
operators on relational and XML schemata are provided,

7 http://www4.in.tum.de/~marschal/botl/
8 http://escher.isis.vanderbilt.edu/tools/get_tool?WOTIF
9 http://www.eclipse.org/proposals/eclipse-mddi/

comprising, e.g., the automatic derivation of semantic
correspondences or differences, the merging of models,
and the derivation of a mapping from other mappings.

Although set in the context of relational and XML
schema matching, this idea seems to be transferable to
tool metamodels. Model-based tool integration, however,
is not only aimed at finding semantic correspondences
between metadata, but also to support certain model
integration scenarios, keeping a later code-generation
step in mind in terms of deriving appropriate model
transformation programs thereof. Another problem is that
the focus of model-based tool integration should go
beyond integrating XML and database schemata, by
allowing the integration of arbitrary MOF-models in the
sense of MDA.

AMMA / AMW. The ATLAS Model Weaver (AMW)
which is part of the AMMA model engineering platform
(soon to be released under the Eclipse GMT project10)
proposed by Bézivin et al. [4], allows to perform a
weaving operation in terms of establishing semantic
correspondences between two metamodels, which are
stored in a weaving model. Model weaving seems to be –
different to Rondo – a manual operation, requiring an
explicit specification of appropriate semantics for
correspondences.

Aspect-orientated Approaches for Model Integration
The research efforts associated with aspect-orientation
also deal with modularization in terms of factoring out
cross cutting concerns into modules called aspects. This
idea manifests in aspect-oriented programming
languages [21], but also in aspect-oriented modeling,
which allow to modularize cross-cutting-concerns in an
implementation independent manner (cf. the approaches
below).

Model-based tool integration focuses on tool
integration, meaning that metamodels are, e.g.,
decomposed according to certain concerns they cover.
Weaving as in aspect-orientation can be compared to the
re-assemblage of models after modularization. In a tool
integration setting, one can assume modularization to
take place by detecting join points, e.g., in the form of
meta-associations and point-cuts, e.g., in the form of
links between model elements, to offer automatic support
for a future re-assemblage. Most of the following
approaches more or less use ideas from aspect-orientation
for model integration purposes.
Model Composition Semantics. Clarke [8] introduces a
composition mechanism for UML class diagrams,
representing different separated concerns. Overlapping
concepts are identified in these models and thus merged
as specified by a composition relationship, following so-
called merge and override strategies. Based on this basic
integration behavior, composition patterns are introduced
as an extension to UML templates.

10 http://www.eclipse.org/gmt/

 4

This approach focuses on UML models, only, and does
not allow, e.g., the deletion of obsolete model elements
after an integration is performed, as required for model-
based tool integration. In addition, model-based tool
integration should focus on the derivation of model
transformation programs during the integration stage,
which are capable of automatically performing, e.g., the
merging of models.
Model Composition Directives. Based on [8], Straw et
al. [37] propose so called composition directives for
composing UML class diagrams. These basically include
name rewriting, adding and deleting of model elements,
change of references, and control of execution order.
Inspired by aspect-oriented programming, so-called
primary models are composed with aspect models, which
represent a crosscutting concern to be interwoven.

The primary focus of this approach seems to be on
model weaving but not on meta-model weaving as
required for model-based tool integration.
GME. The Generic Modeling Environment (GME)
proposed by Karsai et al. [20] is a modeling and
metamodeling toolkit based on UML notation and a
GME specific meta metamodel. GME allows for the
composition of metamodels. The composition
mechanisms comprise an equivalence operator creating a
union of two model elements, similar to the merge
semantics in [8] and two different inheritance operators,
realizing implementation inheritance and interface
inheritance.

Unfortunately, GME is not based on the MOF standard.
Furthermore, GME supports metamodel composition,
only, neglecting further model integration scenarios.
C-SAW. C-SAW, developed as a plug-in for GME by
Gray et al. [16] is a so called cross-cutting-concern
weaver. Aspects are specified using the Embedded
Constraint Language (ECL), a OCL superset, additionally
providing imperative constructs for model manipulation.

The transformation capabilities of ECL are, however,
limited to models of the same metamodel, it lacks support
for abstract integration mechanisms and is, instead of
MOF, based on a meta-metamodel specific to GME.
Domain Composition Approach. Estublier et al. [12]
propose a UML profile allowing the composition of
separately designed domain models, as required when
facing the federation of immutable components off the
shelf. UML associations and association classes are
specialized by stereotypes to express feature
correspondence and concept overlapping.

In principle, this approach supports an alignment
integration scenario, but does not support other
integration scenarios. In addition, only UML models are
supported instead of arbitrary MOF-models.

Summarizing (cf. Table 1), although there are already
few approaches targeting model-based tool integration
from a meta-modeling point of view and providing some
basic abstraction mechanisms each of them suffers from

certain deficiencies with respect to the focus of model-
based tool integration as outlined above.

 MOF-
based

Meta-level
Integration

Model-level
Integration

Automatic
Integration

Different
Scenarios

Rondo ✗ ✗ ✓ ✗ ✗
AMMA ✓ ✓ ✓ ~ ✓
Composition
Semantics

✗ ✗ ✓ ✗ ✓
Composition
Directives

✗ ✗ ✓ ✗ ✓
GME ✗ ~ ✓ ~ ✗
C-SAW ✗ ✓ ✓ ~ ~
Domain
Composition

✗ ✗ ~ ~ ✗

 Legend: ✓ … supported ✗ … not supported ~ … not applicable

Table 1. Comparison of Integration Approaches

Nevertheless, several ideas and concepts of these
approaches could be of high value for model-based tool
integration.

4. SEMANTIC INTEGRATION AND ONTOLOGIES

Besides the support of model transformations and
appropriate abstraction mechanisms as discussed in the
previous section, semantic integration, i.e., the mediation
between semantic heterogeneities constitutes another
crucial challenge for model-based tool integration. The
history of semantic integration goes back to the early
1980s, where Brodie et al. [5] addressed semantic
relativism in data modeling, leading to a comprehensive
taxonomy of semantic heterogeneities introduced by Shet
et al. [36] in the early 1990s and an in-depth survey of
automatic schema matching approaches in 2001,
published by Rahm et al. [30]. Although the problem of
semantic integration is tackled in various ways by
different communities, as could be seen at the remarkable
Dagstuhl workshop on semantic interoperability and
integration in 200411, in recent years, ontologies became
very popular to facilitate various semantic integration
tasks. This is not least since, in comparison to other
techniques, integration based on ontologies can rely
heavily on the high expressive power of ontology
languages and on appropriate reasoning techniques. In
this respect related work in the area of lifting metadata to
ontologies, issues of integrating ontologies, and the usage
of integration scenarios for ontologies is highly relevant
for model-based tool integration, as discussed in the
following (cf. Fig. 2).

Model-Based Tool Integration

Ontology
Integration Architecture

Ontology
Integration Architecture

Lifting Metamodels
to Ontologies

Lifting Metamodels
to Ontologies

Mapping
Discovery
Mapping

Discovery
Ontology-Based

Representation of Mappings
Ontology-Based

Representation of Mappings

Reasoning with
Mappings

Reasoning with
Mappings

Figure 2. Semantic Integration Technologies

11 http://www.dagstuhl.de/04391/

 5

Lifting Metamodels to Ontologies
A basic question to be investigated is the derivation of
ontologies from the tool metamodels, often referred to as
lifting. Few existing work, although approaching the
lifting problem from somewhat different angles, could be
used as starting point to resolve this research question.
OntoLIFT. Lifting is, e.g., dealt with in the WonderWeb
project in terms of the OntoLIFT prototype [40], which
helps to semi-automatically create ontologies from
database schemata by using syntactical patterns as
employed for mapping database schemata to ER models.
Although these ontologies have to be further refined to
infer specific semantics, OntoLIFT provides a useful
entry point for the establishment of ontologies.
Ferdinand et al. Another approach from Ferdinand at al.
[13] proposes an automatic mechanism to lift XML
Schema to the Web Ontology Language (OWL) via RDF
and provide according mapping rules.

Although both approaches deal with the derivation of
ontologies from structured sources, methods applied in
these two approaches cannot be immediately reused,
since model-based tool integration requires the derivation
of ontologies from metamodels. Further research has to
be put into the question of how to facilitate the creation
of ontologies from MOF-based metamodels.
ODM. A way to bridge between model engineering and
ontology engineering could be the Ontology Definition
Metamodel (ODM)12, an upcoming OMG standard for the
definition of ontologies in terms of MOF models.
Guizzardi et al. [17] provide an evaluation framework to
estimate the appropriateness and the comprehensibility of
a modeling language for describing concepts in terms of
domain knowledge captured in an ontology. Such
considerations are relevant in the context of model-based
tool integration to define ontologies for modeling
languages or to estimate to what extent existing
ontologies can be reused.

Integrating Tool Ontologies
As model-based tool integration is able to perform tool
metamodel integration on basis of semantics covered by
tool ontologies, these individual tool ontologies have to
be integrated. One has to deal with different forms of
heterogeneity, establish a certain ontology integration
architecture, and provide appropriate mechanisms for
mapping discovery, representation and reasoning [26].
Although having different goals in mind since in model-
based tool integration, ontologies can be used as a basic
vehicle for the integration of tool metamodels, we can
benefit from a large body of literature which may provide
useful input. For a comprehensive overview about this
active research area compare, e.g., [19], and [26].
Ontology integration architecture. Concerning the
architecture for ontology integration, one can basically
distinguish three alternatives (cf. e.g., [26]): (1) a direct

12 http://www.omg.org/cgi-bin/doc?ad/2003-03-40

mapping between ontologies, (2) an indirect mapping via
a common, shared ontology further on called upper
ontology (sometimes also referred to as toplevel, or
reference ontology), e.g., DOLCE [15] and (3) a mapping
based on a library of already mapped ontologies [39].
This is again similar to database integration research,
where peer-to-peer database systems are similar to the
direct mapping approach, and federated database systems
relying on a global schema are similar to the indirect
mapping approach with the difference that an upper
ontology is usually more general since it needs to
encompass the top level for ontologies yet to be
developed [26]. For model-based tool integration, a
hybrid approach, involving all three architectures seems
to be most beneficial.

Mapping Discovery
Based on a certain ontology integration architecture,
mappings between ontologies have to be established, i.e.,
similar concepts have to be related to each other.
Mapping discovery techniques deal with finding such
correspondences (also called matches) between
ontologies. This can be done either in a fully manual way
or by utilizing heuristic-based or machine learning
techniques that use various characteristics of ontologies,
such as their schemata (schema-based matching), their
instances (instance-based matching) as well as lexical
reference systems [30], [26]. It has to be emphasized, that
for the purpose of model-based tool integration, it seems
not to be necessary to develop yet another mapping
discovery technique. A selection of some of these
approaches which may be useful for model-based tool
integration are sketched out in the following.
Chimaera. Chimaera [24] provides support for ontology
merging by interactively relating concepts that are
identical or related by subsumption or instance
relationships. Further, it supports to manipulate the
ontologies as to improve alignment by suggesting
modifications.
PROMPT. PROMPT [26] supports interactive, guided
ontology merging, starting from linguistic and structural
similarity matches. Merge operations can be performed,
and based on the results and potential conflicts arising
from the merge (e.g., name conflicts, dangling references,
or redundancies in class hierarchies), further operations
are proposed.
PUZZLE. The goal of PUZZLE [18] is to construct a
consensus ontology, i.e., a common, shared ontology,
from independently designed ontologies. Both, linguistic
as well as contextual features of ontology concepts are
considered, there is no need for a previous agreement on
the semantics of the used terminology and WordNet is
used to support, e.g., synonyms and homonyms.
Reasoning rules are based on the relationships subclass,
superclass, equivalentclass, and sibling, and on property
lists of ontology concepts to find new relationships
among concepts.

 6

Representation of and Reasoning with Mappings
Having found appropriate mappings, they have to be
properly represented in order to facilitate reasoning on
mappings. Concerning the representation of mappings,
several approaches can be found in literature [26]. Note
that also combinations thereof are possible. First, similar
to traditional data integration, views can be used to
describe mappings, e.g., between upper ontology and
local ontologies, either using the global-as-view (GAV) or
the local-as-view (LAV) approach, well known from
database integration research [30]. Second, mappings can
be represented in terms of bridging axioms in first-order
logic to express transformation rules, relating classes and
properties of two ontologies, as it is done in the
OntoMerge system [10]. Finally, mappings can be
represented as instances in an ontology of mappings. The
mapping ontology usually provides different ways of
linking concepts from the source ontology to the target
ontology, transformation rules to specify how values
should be changed, and conditions and effects of such
rules. An example is the Semantic Bridge Ontology of the
MAFRA framework [23].
For the purpose of model-based tool integration, it can be
concluded that specific mapping ontologies seem to
provide a great potential for mapping representation as
well as reasoning.
Finally, reasoning aims at drawing a conclusion, e.g. to
perform semantic integration tasks. For model-based tool
integration, reasoning over ontology mappings is
required to facilitate metamodel integration. Reasoning
hardly depends on the underlying representation form
[26] and is therefore not further dealt with in this paper.
As outlined in this section, there is already a huge
amount of work in the area of semantic integration
dealing with ontologies, providing a proper basis for
model-based tool integration. There is, however, to the
best of our knowledge, no literature available, dealing
with the usage of ontologies for metamodel integration,
thus leaving open research questions in several
directions. We advocate that a combination of existing
techniques in the area of model management and
integration with semantic technologies in terms of
ontologies will allow to better exploit the potential of
model-based tool integration.

5. OUTLOOK

Based on the state of the art described in this paper, we
are currently realizing ModelCVS, a system which
enables model-based tool integration based on semantic
technologies. ModelCVS is developed in the course of an
industrial project, involving, among others, a partner of
Computer Associates (CA) and the Austrian Ministery of
Defense. ModelCVS provides transparent transformation
of models between different tools’ modeling languages
expressed as MOF-based metamodels, as well as
versioning capabilities exploiting the rich syntax and
semantics of models. It enables concurrent development

by storing and versioning software artifacts that clients
can access by a check-in/check-out mechanism, similar to
a traditional CVS server. ModelCVS focuses on different
integration scenarios, such as metamodel translation and
modularization. Semantic technologies in terms of
ontologies are used together with a knowledge base to
store machine-readable, tool integration relevant
information, thus allowing to minimize repetitive effort
and partly automate the integration process.
The case study used to demonstrate the applicability of
ModelCVS assumes the integration of three tools, CA’s
CASE tool AllFusion Gen (Gen for short), the UML tool
Rational Software Modeler, and the Oracle BPEL
Process Manager. Covering a wide range of modeling
tasks, Gen is a legacy tool under which many existing
applications have been developed. UML should be
employed for new projects to link up with current
technologies, and finally BPEL (Business Process
Execution Language for Web Services) is required for
developing certain web-enabled workflow applications.

REFERENCES

[1] M. J. Anderson, B. D. Bird: An evaluation of PCTE

as a portable tool platform, Proc. of the Software
Engineering Environments Conference, July 1993.

[2] S. Becker et al.: Model-Based A-Posteriori
Integration of Engineering Tools for Incremental
Development Processes, Journal on Software and
Systems Modeling (SoSym), Springer, 4(2), 2005.

[3] J. A. Bergstra, P. Klint: The Discrete Time ToolBus
- a software coordination architecture. Coordination
Models and Language, LNCS# 1061, 1996.

[4] J. Bézivin et al.: First Experiments with a
ModelWeaver, OOPSLA & GPCE Workshop,
Vancouver, Oct. 2004

[5] M. L. Brodie: On Modeling Behavioural Semantics
of Databases, 7th International Conference on Very
Large Data Bases, Cannes, France, Sept. 1981.

[6] A. W. Brown, P. H. Feiler, K. C. Wallnau: Past and
future models of CASE integration, Proc. of the 5th
International Workshop on Computer-Aided
Software Engineering, IEEE, July 1992.

[7] Engineering (ICSE), Toronto, Canada, 2001.
[8] S. Clarke: Extending standard UML with model

composition semantics, Science of Computer
Programming, Elsevier Science, 44(1), July 2002.

[9] K. Czarnecki, S. Helsen: Classification of Model
Transformation Approaches, OOPSLA Workshop
on Generative techniques in the context of MDA,
Oct. 2003.

[10] D. Dou, et al.: Ontology translation on the semantic
web, International Conference on Ontologies,
Databases and Applications of Semantics, 2003.

[11] A. Earl: Principles of a Reference Model for
Computer Aided Software Engineering

 7

Environments, Proc. of the Int. Workshop on
Software engineering environments, Springer-
Verlag, New York, USA, 1989.

[12] J. Estublier, et al.: A Domain Composition
Approach, Proc. of the International Workshop on
Applications of UML/MDA to Software Systems
(UMSS), Las Vegas, USA, June 2005.

[13] M. Ferdinand, et al: Lifting XML Schema to OWL,
4th International Conference on Web Engineering
(ICWE), Munich, Germany, July, 2004.

[14] R. G. Flatscher: Metamodeling in EIA/CDIF - meta-
metamodel and metamodels, ACM Transactions on
Modeling and Computer Simulation, Oct. 2002.

[15] A. Gangemi et al.: Sweetening wordnet with
DOLCE, AI Magazine, 24(3), 2003.

[16] J. Gray, et al.: An Approach for Supporting Aspect-
Oriented Domain Modeling, Generative
Programming and Component Engineering (GPCE),
LNCS 2830, Germany, Sept. 2003.

[17] G. Guizzardi, et al: An Ontology-Based Approach
for Evaluating the Domain Appropriateness and
Comprehensibility Appropriateness of Modeling
Languages, 8th Int. Conf. on Model Driven
Engineering Languages and Systems, Jamaica,
2005.

[18] J. Huang et al.: A Schema-Based Approach
Combined with Inter-Ontology Reasoning to
Construct Consensus Ontologies, 1st Int. Workshop
on Contexts and Ontologies: Theory, Practice and
Applications, July, 2005.

[19] Y. Kalfoglou, M. Schorlemmer: Ontology Mapping:
The State of the Art, Proc. of Dagstuhl Seminar on
Semantic Interoperability and Integration 2005,
Dagstuhl, Germany, 2005.

[20] G. Karsai et al: Composition and Cloning in
Modeling and Meta-Modeling Languages, IEEE
Transactions on Control System Technology, 2004.

[21] G. Kiczales et al.: Aspect-Oriented Programming,
Proc. of the European Conference on Object-
Oriented Programming (ECOOP), Springer LNCS
1241, Finland, 1997.

[22] X. Lin, G. Kappel: Model CVS: A Model
Transformation and Versioning System, Technical
Report, TU Vienna, 2005.

[23] A. Maedche, et al.: MAFRA – a Mapping
Framework for Distributed Ontologies, 13th
European Conf. on Knowledge Engineering and
Knowledge Management, EKAQ, Spain, 2002.

[24] D. L. McGuinness, et al.: An Environment for
Merging and Testing Large Ontologies, 7th Int.
Conf. on Principles of Knowledge Representation
and Reasoning (KR 2000), USA, 2000.

[25] S. Melnik, E. Rahm, P. A. Bernstein: Rondo: a
programming platform for generic model
management, ACM SIGMOD international

conference on Management of data, ACM Press,
New York, USA, June 2003.

[26] N. Noy: Semantic Integration: A Survey Of
Ontology-Based Approaches, SIGMOD Record,
33(4), Dec. 2004.

[27] P. A. Oberndorf: The Common Ada Programming
Support Environment Interface Set, Software
Engineering, IEEE Transactions, 14(6), June 1988.

[28] Object Management Group (OMG): MDA Guide.
Version 1.0.1, June 2004

[29] Object Management Group (OMG): Meta Object
Facility (MOF) 2.0 Core Specification, Oct. 2003.

[30] E. Rahm et al: A survey of approaches to automatic
schema matching, VLDB Journal, 10(4), 2001

[31] C. Reichmann, et al.: GeneralStore - a CASE-tool
integration platform enabling model level coupling
of heterogeneous designs for embedded electronic
systems, 11th Int. Conf. on Engineering of
Computer Systems, May 2004.

[32] T. Reiter, E. Kapsammer, W. Retschitzegger, W.
Schwinger: Model Integration Through Mega
Operations, Workshop on Model-driven Web
Engineering (MDWE), Sydney, July 2005

[33] T. Reiter, E. Kapsammer et al., Towards a Semantic
Infrastructure Supporting Model-based Tool
Integration, 1st Int. Workshop on Global Integrated
Model Management, Shanghai, May 2006.

[34] T. Reiter, E. Kapsammer et al., A Generator
Framework for Domain-Specific Model
Transformation Languages, 8th International
Conference on Enterprise Information Systems
(ICEIS), Cyprus, May 2006.

[35] A. Schürr, H. Dörr: Introduction to the special
SoSym section on model-based tool integration,
Journal on Software and Systems Modeling
(SoSym), Springer-Verlag, 4(2), May, 2005.

[36] A. P. Shet, J. A. Larson: Federated Database
Systems for Managing Distributed, Heterogeneous
and Autonomous Databases, ACM Computing
Surveys, 22(3), Sep. 1990.

[37] G. Straw et al.: Model Composition Directives,
Proc. of the 7th UML Conf., Lisbon, Oct. 2004.

[38] L. Tratt: Model transformations and tool
integration, Journal on Software and Systems
Modeling (SoSym), Springer-Verlag, 4(2), May,
2005.

[39] M. Uschold et al.: Ontologies and Semantics for
Seamless Connectivity, SIGMOD Record, 33(4),
Dec. 2004.

[40] R. Volz, et al.: OntoLIFT Prototype, IST Project
2001-33052 WonderWeb, Deliverable 11, 2003.

[41] A. Wasserman: Tool integration in software
engineering environments, Proc. of the Int.
workshop on SWEE, Springer, USA, 1989.

