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Abstract 
The quality and effectiveness of software development 
heavily depends on the underlying tools used for 
different phases of the development lifecycle. With the 
rise of model-driven development, a proper integration of 
modeling tools represents a crucial success factor. At the 
same time, the usage of models as the major artifact in 
software development allows a new form of 
interoperability in terms of model-based tool integration. 
Model-based tool integration focuses on the integration 
between the tool’s languages metamodels, providing a 
proper basis for a later (semi-)automatic model 
integration step. The contribution of this paper is to 
investigate the current state of the art in model-based tool 
integration, to identify and elaborate on promising 
concepts and technologies and to point the way to next-
generation tool integration solutions, based on semantic 
technologies. 
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1.  INTRODUCTION 
 

Effective software development processes resulting in 
high-quality software products require proper tool 
support for different phases of the software lifecycle. The 
model-driven software development paradigm as, e.g., 
propagated by the OMG with its Model-Driven 
Architecture (MDA) places models instead of pure code 
in the center of the development process, being used for 
different kinds of development tasks. For example, one 
could use a special purpose modeling tool for 
requirements definition, another one for UML modeling 
and a third one for test case generation and simulation 
thereof. Employing a series of special-purpose modeling 
tools is beneficial, on the one hand since it avoids the 
dependency from a huge general purpose tool and its 
vendor and on the other hand since it allows to employ 
those tools best suited for the special modeling task at 
hand. One major pre-requisite is, however, that these 

tools are properly integrated, allowing the seamless 
exchange of models in-between. 
What we are looking for is model-based tool integration, 
enabling to facilitate any tool appropriate for the 
modeling task at hand (cf. [32], [33], [34]). Model-based 
tool integration means that tools are integrated on basis 
of metamodels defining syntax and semantics of the 
modeling languages supported by the tools. This would 
allow to integrate the metamodels once and to apply this 
integration solution to any models subsequently, 
conforming to these so-called tool metamodels. Thus, the 
repetitive effort of ad-hoc model-integration, which is a 
cumbersome and error-prone task, could be avoided. 
To provide a comprehensive solution for model-based 
tool integration, three crucial requirements have to be 
fulfilled (cf. also Fig. 1). First, several integration 
scenarios should be supported, comprising, e.g., 
translation, modularization, alignment, and merge of 
models. Second, it should be possible to integrate models 
based on arbitrary metamodels, having only a certain 
meta-metamodel in common, such as MOF (Meta Object 
Facility) [29]. Third, and probably most important, 
transformations between concrete models, which realize 
the integration scenarios should be (semi-)automatically 
derived from the integrations defined between the 
corresponding metamodels. Although still in its infancy, 
there are already a few approaches dealing with model-
based tool integration, fulfilling more or less one or the 
other requirement (cf., e.g., [35]). 
The goal of this paper is to investigate the current state of 
the art in model-based tool integration, to identify and 
elaborate on promising concepts, approaches, and 
technologies and to point the way to next-generation tool 
integration solutions, based on semantic technologies. In 
Section 2, tool integration is considered from a historical 
point of view. Section 3 discusses approaches most 
relevant for the purpose of model transformation in the 
context of model-driven development. Section 4 
investigates promising approaches for the purpose of 
semantic integration, especially focusing on ontologies. 
Section 5, finally, points to future research by briefly 
reporting on a model-based tool integration approach 
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called ModelCVS, which we are currently realizing in the 
course of an industrial project. 
 

2.  HISTORY OF TOOL INTEGRATION 
 

Research in tool integration goes back to the so-called 
Stoneman Model2 which was proposed at the end of the 
70's and summarized by Brown [6] in two categories, the 
conceptual level (“what is integration?”) and the 
mechanical level (“how do we provide integration?”).  
Conceptual level of integration. Concerning conceptual 
integration, Wasserman [41] has suggested a 
categorization to describe the integration of tools from a 
functional point of view comprising integration in terms 
of platforms, GUIs, data, control, and processes. Other 
categorizations used for characterizing tool integration 
comprises depth of integration, varying from exchanging 
byte streams to semantics-preserving integration, and the 
universal applicability of the integration approach. 
Commercial of the shelf (COTS) tools, for example, are 
meant to be integrated if they function coherently and 
effectively in an environment as a whole, as is the case in 
an integrated development environment (IDE). 
Mechanical level of integration. The research efforts at 
the mechanical level of tool integration (cf., e.g., [22] for 
an overview) include (1) a series of standardization 
efforts and middleware services like CAIS [27], PCTE 
[1], CDIF [14], CORBA3, and OMG’s recent RFP OTIF4 
(Open Tool Integration Framework) to support tool 
interoperability, (2) architecture models, infrastructures, 
and tool suites like the ECMA toaster model [11], the 
ToolBus architecture [3], and finally (3) basic tool 
integration mechanisms such as data sharing, data 
linkage, data interchange, and message passing [35]. 

Some of these efforts were often grounded in large 
initiatives but have not been widely accepted. The 
European standardization effort PCTE, e.g., supporting 
data integration with a common repository was not 
widely adopted in industry, not least because of its 
heavyweight architecture and high usage costs. Another 
example, CDIF, a standard for model exchange has been 
in the meanwhile replaced by MOF. Regarding, e.g., tool 
suites, they are often incomplete with respect to the 
various development activities requiring tool support, and 
most often do not allow to select between “best of class” 
tools (apart from promising exceptions like Eclipse5) 
[35]. 

Despite of all these important efforts, tool integration is 
still a challenging task, leading most often to hand-
crafted bilateral integration solutions [35]. These 
“solutions” suffer from high maintenance overheads not 
least in case of evolutions of the underlying data or tools 
themselves, are often strongly technology-dependent and, 
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most importantly, do not scale. With the advent of 
model-driven development (MDD) and in particular the 
introduction of OMG’s model-driven architecture (MDA) 
[28] new possibilities have been opened up to cope with 
these challenges, as described in the next Section. 
 

3.  MDA AND MODEL TRANSFORMATIONS 
 
The key idea of MDA is to focus on models instead of 
code as the major artefact in software development. This 
allows modeling tools to be integrated on basis of the 
metamodels of modeling languages supported by the 
tools (i.e., the tool metamodels), thus paving the way for 
another generation of (meta)model-based tool integration 
approaches and providing a basis to overcome the above 
mentioned limitations of existing integration approaches. 
For this, MDA includes a set of interrelated standards6, 
comprising a language for metamodel definition (Meta 
Object Facility – MOF), and the MOF-compliant 
languages for constraint specification (Object Constraint 
Language – OCL), metadata interchange (XML Metadata 
Interchange – XMI), and last but most important model 
transformation (QVT). 
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Figure 1. Model-based Tool Integration – The Big Picture 

 

Model Transformation Languages 

Model transformation is one of the major building blocks 
in the context of model-based tool integration and a very 
active research area. Existing approaches in this area 
having been either submitted to OMG’s QVT request for 
proposals or being already part of existing MDA tools 
range from algorithmic and imperative approaches, via 
graph-transformation-based approaches to template 
rule-driven, and hybrid approaches [9]. Tratt et al. [38], 
e.g., provide an extensible, imperative model 
transformation language with some rule-based elements 
for pattern matching purposes, whereas Becker et al. [2] 
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use purely rule-based mechanisms employing graph-
transformations and generates wrapper for tool 
integration following a kind of programming-by-example 
approach. Transformation languages such as BOTL7, 
allow the definition of modular, rule-based 
transformations, with independent rules for sets of 
metamodel elements. For a more detailed overview of 
such transformation languages cf. [9]. 

Infrastructures based on Transformation Languages 

Based on these several kinds of QVT-like transformation 
language proposals, infrastructures and frameworks have 
been built for tool integration [35]. For example, WOTIF 
(Web-based open tool integration framework)8 uses a 
graph-transformation mechanism and realises different 
tool integration scenarios (e.g., direct tool integration and 
integration via a common metamodel), but requires that 
every tool to be integrated supports certain APIs for 
installing plugins. GeneralStore [31] being in fact a 
MOF-based repository, allows bi-directional 
transformations between models, but uses XSLT or ad-
hoc approaches for model transformation, only. Finally, 
MDDi, (Model-driven Development Integration Project 
of Eclipse)9, although providing some interesting ideas 
for model integration in terms of a bus architecture 
similar to AMMA (cf. below), is still in its draft proposal 
phase. 

Deficiencies of pure model transformations. Although 
QVT-like model transformation languages are a core 
technology for model-based tool integration, existing 
proposals are too generic and lack appropriate abstraction 
mechanisms for different kinds of model integration 
scenarios, which are highly needed in practice and well-
known from other research areas such as federated and 
multi database systems [36]. Such integration scenarios 
would require a series of basic model transformations 
which will simply not scale up when manually specified 
for complex models.  

Abstraction Mechanisms for Model Integration 

There are only few approaches providing abstraction 
mechanisms in terms of, e.g., high-level integration  
operators or modularisation techniques in the areas of 
model management and model integration as well as in 
the area of aspect-oriented modeling which are described 
in the following in more detail. 
Rondo. The generic model management initiative from 
Bernstein et al. [25] provides a prototypical 
implementation called Rondo, which aims at keeping the 
matching of large XML schemata scalable. An approach 
to matching is introduced that operates on fragments of a 
large schema to lower the complexity of matching tasks. 
Besides this modularisation, model management 
operators on relational and XML schemata are provided, 
                                                           
7 http://www4.in.tum.de/~marschal/botl/ 
8 http://escher.isis.vanderbilt.edu/tools/get_tool?WOTIF 
9 http://www.eclipse.org/proposals/eclipse-mddi/ 

comprising, e.g., the automatic derivation of semantic 
correspondences or differences, the merging of models, 
and the derivation of a mapping from other mappings.  

Although set in the context of relational and XML 
schema matching, this idea seems to be transferable to 
tool metamodels. Model-based tool integration, however, 
is not only aimed at finding semantic correspondences 
between metadata, but also to support certain model 
integration scenarios, keeping a later code-generation 
step in mind in terms of deriving appropriate model 
transformation programs thereof. Another problem is that 
the focus of model-based tool integration should go 
beyond integrating XML and database schemata, by 
allowing the integration of arbitrary MOF-models in the 
sense of MDA. 

AMMA / AMW. The ATLAS Model Weaver (AMW) 
which is part of the AMMA model engineering platform 
(soon to be released under the Eclipse GMT project10) 
proposed by Bézivin et al. [4], allows to perform a 
weaving operation in terms of establishing semantic 
correspondences between two metamodels, which are 
stored in a weaving model. Model weaving seems to be – 
different to Rondo – a manual operation, requiring an 
explicit specification of appropriate semantics for 
correspondences.  

Aspect-orientated Approaches for Model Integration 
The research efforts associated with aspect-orientation 
also deal with modularization in terms of factoring out 
cross cutting concerns into modules called aspects. This 
idea manifests in aspect-oriented programming 
languages [21], but also in aspect-oriented modeling, 
which allow to modularize cross-cutting-concerns in an 
implementation independent manner (cf. the approaches 
below). 

Model-based tool integration focuses on tool 
integration, meaning that metamodels are, e.g., 
decomposed according to certain concerns they cover. 
Weaving as in aspect-orientation can be compared to the 
re-assemblage of models after modularization. In a tool 
integration setting, one can assume modularization to 
take place by detecting join points, e.g., in the form of 
meta-associations and point-cuts, e.g., in the form of 
links between model elements, to offer automatic support 
for a future re-assemblage. Most of the following 
approaches more or less use ideas from aspect-orientation 
for model integration purposes. 
Model Composition Semantics. Clarke [8] introduces a 
composition mechanism for UML class diagrams, 
representing different separated concerns. Overlapping 
concepts are identified in these models and thus merged 
as specified by a composition relationship, following so-
called merge and override strategies. Based on this basic 
integration behavior, composition patterns are introduced 
as an extension to UML templates.  
                                                           
10 http://www.eclipse.org/gmt/ 
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This approach focuses on UML models, only, and does 
not allow, e.g., the deletion of obsolete model elements 
after an integration is performed, as required for model-
based tool integration. In addition, model-based tool 
integration should focus on the derivation of model 
transformation programs during the integration stage, 
which are capable of automatically performing, e.g., the 
merging of models. 
Model Composition Directives. Based on [8], Straw et 
al. [37] propose so called composition directives for 
composing UML class diagrams. These basically include 
name rewriting, adding and deleting of model elements, 
change of references, and control of execution order. 
Inspired by aspect-oriented programming, so-called 
primary models are composed with aspect models, which 
represent a crosscutting concern to be interwoven. 

The primary focus of this approach seems to be on 
model weaving but not on meta-model weaving as 
required for model-based tool integration. 
GME. The Generic Modeling Environment (GME) 
proposed by Karsai et al. [20] is a modeling and 
metamodeling toolkit based on UML notation and a 
GME specific meta metamodel. GME allows for the 
composition of metamodels. The composition 
mechanisms comprise an equivalence operator creating a 
union of two model elements, similar to the merge 
semantics in [8] and two different inheritance operators, 
realizing implementation inheritance and interface 
inheritance. 

Unfortunately, GME is not based on the MOF standard. 
Furthermore, GME supports metamodel composition, 
only, neglecting further model integration scenarios. 
C-SAW. C-SAW, developed as a plug-in for GME by 
Gray et al. [16] is a so called cross-cutting-concern 
weaver. Aspects are specified using the Embedded 
Constraint Language (ECL), a OCL superset, additionally 
providing imperative constructs for model manipulation. 

The transformation capabilities of ECL are, however, 
limited to models of the same metamodel, it lacks support 
for abstract integration mechanisms and is, instead of 
MOF, based on a meta-metamodel specific to GME. 
Domain Composition Approach. Estublier et al. [12] 
propose a UML profile allowing the composition of 
separately designed domain models, as required when 
facing the federation of immutable components off the 
shelf. UML associations and association classes are 
specialized by stereotypes to express feature 
correspondence and concept overlapping. 

In principle, this approach supports an alignment 
integration scenario, but does not support other 
integration scenarios. In addition, only UML models are 
supported instead of arbitrary MOF-models. 

Summarizing (cf. Table 1), although there are already 
few approaches targeting model-based tool integration 
from a meta-modeling point of view and providing some 
basic abstraction mechanisms each of them suffers from 

certain deficiencies with respect to the focus of model-
based tool integration as outlined above.  
 

 MOF-
based

Meta-level 
Integration 

Model-level 
Integration 

Automatic
Integration 

Different 
Scenarios 

Rondo ✗ ✗ ✓ ✗ ✗ 
AMMA ✓ ✓ ✓ ~ ✓ 
Composition 
Semantics 

✗ ✗ ✓ ✗ ✓ 
Composition 
Directives 

✗ ✗ ✓ ✗ ✓ 
GME ✗ ~ ✓ ~ ✗ 
C-SAW ✗ ✓ ✓ ~ ~ 
Domain 
Composition

✗ ✗ ~ ~ ✗ 
 
 Legend: ✓ … supported        ✗ … not supported        ~ … not applicable 

Table 1. Comparison of Integration Approaches 
 

Nevertheless, several ideas and concepts of these 
approaches could be of high value for model-based tool 
integration. 
 

4.  SEMANTIC INTEGRATION AND ONTOLOGIES 
 

Besides the support of model transformations and 
appropriate abstraction mechanisms as discussed in the 
previous section, semantic integration, i.e., the mediation 
between semantic heterogeneities constitutes another 
crucial challenge for model-based tool integration. The 
history of semantic integration goes back to the early 
1980s, where Brodie et al. [5] addressed semantic 
relativism in data modeling, leading to a comprehensive 
taxonomy of semantic heterogeneities introduced by Shet 
et al. [36] in the early 1990s and an in-depth survey of 
automatic schema matching approaches in 2001, 
published by Rahm et al. [30]. Although the problem of 
semantic integration is tackled in various ways by 
different communities, as could be seen at the remarkable 
Dagstuhl workshop on semantic interoperability and 
integration in 200411, in recent years, ontologies became 
very popular to facilitate various semantic integration 
tasks. This is not least since, in comparison to other 
techniques, integration based on ontologies can rely 
heavily on the high expressive power of ontology 
languages and on appropriate reasoning techniques. In 
this respect related work in the area of lifting metadata to 
ontologies, issues of integrating ontologies, and the usage 
of integration scenarios for ontologies is highly relevant 
for model-based tool integration, as discussed in the 
following (cf. Fig. 2). 

Model-Based Tool Integration

Ontology
Integration Architecture

Ontology
Integration Architecture

Lifting Metamodels
to Ontologies

Lifting Metamodels
to Ontologies

Mapping
Discovery
Mapping

Discovery
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Reasoning with
Mappings

Reasoning with
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Figure 2. Semantic Integration Technologies 
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Lifting Metamodels to Ontologies 
A basic question to be investigated is the derivation of 
ontologies from the tool metamodels, often referred to as 
lifting. Few existing work, although approaching the 
lifting problem from somewhat different angles, could be 
used as starting point to resolve this research question. 
OntoLIFT. Lifting is, e.g., dealt with in the WonderWeb 
project in terms of the OntoLIFT prototype [40], which 
helps to semi-automatically create ontologies from 
database schemata by using syntactical patterns as 
employed for mapping database schemata to ER models. 
Although these ontologies have to be further refined to 
infer specific semantics, OntoLIFT provides a useful 
entry point for the establishment of ontologies.  
Ferdinand et al. Another approach from Ferdinand at al. 
[13] proposes an automatic mechanism to lift XML 
Schema to the Web Ontology Language (OWL) via RDF 
and provide according mapping rules. 

Although both approaches deal with the derivation of 
ontologies from structured sources, methods applied in 
these two approaches cannot be immediately reused, 
since model-based tool integration requires the derivation 
of ontologies from metamodels. Further research has to 
be put into the question of how to facilitate the creation 
of ontologies from MOF-based metamodels. 
ODM. A way to bridge between model engineering and 
ontology engineering could be the Ontology Definition 
Metamodel (ODM)12, an upcoming OMG standard for the 
definition of ontologies in terms of MOF models. 
Guizzardi et al. [17] provide an evaluation framework to 
estimate the appropriateness and the comprehensibility of 
a modeling language for describing concepts in terms of 
domain knowledge captured in an ontology. Such 
considerations are relevant in the context of model-based 
tool integration to define ontologies for modeling 
languages or to estimate to what extent existing 
ontologies can be reused. 

Integrating Tool Ontologies 
As model-based tool integration is able to perform tool 
metamodel integration on basis of semantics covered by 
tool ontologies, these individual tool ontologies have to 
be integrated. One has to deal with different forms of 
heterogeneity, establish a certain ontology integration 
architecture, and provide appropriate mechanisms for 
mapping discovery, representation and reasoning [26]. 
Although having different goals in mind since in model-
based tool integration, ontologies can be used as a basic 
vehicle for the integration of tool metamodels, we can 
benefit from a large body of literature which may provide 
useful input. For a comprehensive overview about this 
active research area compare, e.g., [19], and [26]. 
Ontology integration architecture. Concerning the 
architecture for ontology integration, one can basically 
distinguish three alternatives (cf. e.g., [26]): (1) a direct 
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mapping between ontologies, (2) an indirect mapping via 
a common, shared ontology further on called upper 
ontology (sometimes also referred to as toplevel, or 
reference ontology), e.g., DOLCE [15] and (3) a mapping 
based on a library of already mapped ontologies [39]. 
This is again similar to database integration research, 
where peer-to-peer database systems are similar to the 
direct mapping approach, and federated database systems 
relying on a global schema are similar to the indirect 
mapping approach with the difference that an upper 
ontology is usually more general since it needs to 
encompass the top level for ontologies yet to be 
developed [26]. For model-based tool integration, a 
hybrid approach, involving all three architectures seems 
to be most beneficial. 

Mapping Discovery 
Based on a certain ontology integration architecture, 
mappings between ontologies have to be established, i.e., 
similar concepts have to be related to each other. 
Mapping discovery techniques deal with finding such 
correspondences (also called matches) between 
ontologies. This can be done either in a fully manual way 
or by utilizing heuristic-based or machine learning 
techniques that use various characteristics of ontologies, 
such as their schemata (schema-based matching), their 
instances (instance-based matching) as well as lexical 
reference systems [30], [26]. It has to be emphasized, that 
for the purpose of model-based tool integration, it seems 
not to be necessary to develop yet another mapping 
discovery technique. A selection of some of these 
approaches which may be useful for model-based tool 
integration are sketched out in the following. 
Chimaera. Chimaera [24] provides support for ontology 
merging by interactively relating concepts that are 
identical or related by subsumption or instance 
relationships. Further, it supports to manipulate the 
ontologies as to improve alignment by suggesting 
modifications. 
PROMPT. PROMPT [26] supports interactive, guided 
ontology merging, starting from linguistic and structural 
similarity matches. Merge operations can be performed, 
and based on the results and potential conflicts arising 
from the merge (e.g., name conflicts, dangling references, 
or redundancies in class hierarchies), further operations 
are proposed. 
PUZZLE. The goal of PUZZLE [18] is to construct a 
consensus ontology, i.e., a common, shared ontology, 
from independently designed ontologies. Both, linguistic 
as well as contextual features of ontology concepts are 
considered, there is no need for a previous agreement on 
the semantics of the used terminology and WordNet is 
used to support, e.g., synonyms and homonyms. 
Reasoning rules are based on the relationships subclass, 
superclass, equivalentclass, and sibling, and on property 
lists of ontology concepts to find new relationships 
among concepts. 
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Representation of and Reasoning with Mappings 
Having found appropriate mappings, they have to be 
properly represented in order to facilitate reasoning on 
mappings. Concerning the representation of mappings, 
several approaches can be found in literature [26]. Note 
that also combinations thereof are possible. First, similar 
to traditional data integration, views can be used to 
describe mappings, e.g., between upper ontology and 
local ontologies, either using the global-as-view (GAV) or 
the local-as-view (LAV) approach, well known from 
database integration research [30]. Second, mappings can 
be represented in terms of bridging axioms in first-order 
logic to express transformation rules, relating classes and 
properties of two ontologies, as it is done in the 
OntoMerge system [10]. Finally, mappings can be 
represented as instances in an ontology of mappings. The 
mapping ontology usually provides different ways of 
linking concepts from the source ontology to the target 
ontology, transformation rules to specify how values 
should be changed, and conditions and effects of such 
rules. An example is the Semantic Bridge Ontology of the 
MAFRA framework [23].  
For the purpose of model-based tool integration, it can be 
concluded that specific mapping ontologies seem to 
provide a great potential for mapping representation as 
well as reasoning.  
Finally, reasoning aims at drawing a conclusion, e.g. to 
perform semantic integration tasks. For model-based tool 
integration, reasoning over ontology mappings is 
required to facilitate metamodel integration. Reasoning 
hardly depends on the underlying representation form 
[26] and is therefore not further dealt with in this paper.  
As outlined in this section, there is already a huge 
amount of work in the area of semantic integration 
dealing with ontologies, providing a proper basis for 
model-based tool integration. There is, however, to the 
best of our knowledge, no literature available, dealing 
with the usage of ontologies for metamodel integration, 
thus leaving open research questions in several 
directions. We advocate that a combination of existing 
techniques in the area of model management and 
integration with semantic technologies in terms of 
ontologies will allow to better exploit the potential of 
model-based tool integration. 
 

5.  OUTLOOK 
 

Based on the state of the art described in this paper, we 
are currently realizing ModelCVS, a system which 
enables model-based tool integration based on semantic 
technologies. ModelCVS is developed in the course of an 
industrial project, involving, among others, a partner of 
Computer Associates (CA) and the Austrian Ministery of 
Defense. ModelCVS provides transparent transformation 
of models between different tools’ modeling languages 
expressed as MOF-based metamodels, as well as 
versioning capabilities exploiting the rich syntax and 
semantics of models. It enables concurrent development 

by storing and versioning software artifacts that clients 
can access by a check-in/check-out mechanism, similar to 
a traditional CVS server. ModelCVS focuses on different 
integration scenarios, such as metamodel translation and 
modularization. Semantic technologies in terms of 
ontologies are used together with a knowledge base to 
store machine-readable, tool integration relevant 
information, thus allowing to minimize repetitive effort 
and partly automate the integration process.  
The case study used to demonstrate the applicability of 
ModelCVS assumes the integration of three tools, CA’s 
CASE tool AllFusion Gen (Gen for short), the UML tool 
Rational Software Modeler, and the Oracle BPEL 
Process Manager. Covering a wide range of modeling 
tasks, Gen is a legacy tool under which many existing 
applications have been developed. UML should be 
employed for new projects to link up with current 
technologies, and finally BPEL (Business Process 
Execution Language for Web Services) is required for 
developing certain web-enabled workflow applications. 
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