
Learning To Learn Using Gradient Des
entSepp Ho
hreiter1, A. Steven Younger1, and Peter R. Conwell21 Department of Computer S
ien
eUniversity of Colorado, Boulder, CO 80309{04302 Physi
s DepartmentWestminster College, Salt Lake City, UtahAbstra
t. This paper introdu
es the appli
ation of gradient des
entmethods to meta-learning. The 
on
ept of \meta-learning", i.e. of a sys-tem that improves or dis
overs a learning algorithm, has been of in-terest in ma
hine learning for de
ades be
ause of its appealing appli
a-tions. Previous meta-learning approa
hes have been based on evolution-ary methods and, therefore, have been restri
ted to small models withfew free parameters. We make meta-learning in large systems feasible byusing re
urrent neural networks with their attendant learning routinesas meta-learning systems. Our system derived 
omplex well performinglearning algorithms from s
rat
h. In this paper we also show that ourapproa
h performs non-stationary time series predi
tion.1 Introdu
tionPhrases like \I have experien
e in ...", \This is similar to ...", or \This is atypi
al 
ase of ..." imply that the person making su
h statements learns thetask at hand faster or more a

urately than an unexperien
ed human. Thislearning enhan
ement results from solution regularities in a problem domain. Ina 
onventional ma
hine learning approa
h the learning algorithm mostly doesnot take into a

ount previous learning experien
es despite the fa
t that methodssimilar to human reasoning are expe
ted to yield better performan
e. The useof previous learning experien
es in indu
tive reasoning is known as \knowledgetransfer" [4, 1, 14℄ or \indu
tive bias shifts" [15, 6, 13℄.In the resear
h �eld of \knowledge transfer" we fo
us on one of the mostappealing topi
s: \meta-learning" or \learning to learn" [4, 14, 11, 12℄. A meta-learner sear
hes out and �nds appropriate learning algorithms tailored to spe
i�
learning tasks. To �nd su
h learning methods, a supervisory algorithm that re-views and modi�es the training algorithm must be added. In 
ontrast to thesubordinate learning s
heme, the supervisory routine has a broader s
ope. Itmust ignore the details unique to spe
i�
 problems, and look for symmetriesover a long time s
ale, i.e. it must perform \knowledge transfer". For example
onsider a human as the supervisor and a kernel density estimator as the subor-dinate method. The human has previous experien
es with over�tting and triesto avoid it by adding a bandwidth adaptation and improving the estimator. Wewant to automati
ally obtain su
h learning method improvements by repla
ing



the human part with an appropriate system. This automati
 system must in-
lude an obje
tive fun
tion to judge the performan
e of the learning algorithmand rules for the adjustment of the algorithm. Meta-learning is known in the
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Fig. 1. The meta-learning system 
onsists of the supervisory and the subordinate sys-tem (sequen
e element j is pro
essed). The subordinate system is a re
urrent network.Its attendant learning algorithm represents the �xed supervisory system. Target fun
-tion arguments x are mapped to results y, e.g. y(j) = f(x(j)). The previous fun
tionresult y(j � 1) is supplied to the subordinate system so that it 
an determinate theprevious error of the subordinate model. Subordinate and supervisory outputs areidenti�ed.reinfor
ement learning framework [12, 13℄. This paper reports on our work onmeta-learning in a supervised learning framework where a model is supposed toapproximate a fun
tion after being trained on examples. Our meta-learning sys-tem 
onsists of the supervisory pro
edure, whi
h is �xed, and of the adjustablesubordinate system, whi
h must be run on a 
ertain medium (see left hand sideof Figure 1). To exemplify this, for this medium we might have used a Turingma
hine (i.e. a 
omputer) where the subordinate model and the subordinatetraining routine is represented by a program (see right hand side of Figure 1).Any 
hanges to the program amount to 
hanges in the subordinate learning algo-rithm1. However, the output of the dis
rete Turing ma
hine is not di�erentiable.Thus, only dedu
tive or evolutionary strategies 
an be used to improve the Tur-ing ma
hine program. Instead of exe
uting the subordinate learning algorithmwith a Turing ma
hine, our method exe
utes the algorithm with a re
urrentneural network in order to get a di�erentiable output. This is possible be
ause a(suÆ
iently large) re
urrent neural network 
an emulate a Turing ma
hine. Thedi�erentiable output allows us to apply gradient des
ent methods to improvethe subordinate routine. A re
urrent network with random initial weights 
anbe viewed as a learning ma
hine with a very poor subordinate learning algo-rithm. We hypothesize that gradient based optimization approa
hes 
an be usedto derive a learning algorithm from a random starting point.1 It should be mentioned that in general, the 
oded model and the 
oded learningalgorithm 
annot be separated. A

ordingly, with the term \learning algorithm" wemean both.



The 
apability of re
urrent networks to exe
ute the subordinate system wasproved and demonstrated in [3, 19℄. Several resear
hers have suggested meta-learning systems based on neural networks and used geneti
 algorithms to adjustthe subordinate learning algorithm [2, 10, 19℄. Our goal is to obtain 
omplex sub-ordinate learning algorithms whi
h need a large re
urrent network with manyparameters. Geneti
 algorithms are infeasible due to the large number of 
om-putations required. This paper introdu
es gradient des
ent for meta-learning tohandle su
h large systems, and, thus, to provide an optimization te
hnique inthe spa
e of learning algorithms.Every re
urrent neural network ar
hite
ture with its attendant learning pro-
edure is a possible meta-learning system. One may 
hoose for example ba
kprop-agation through time (BPTT [18, 16℄) or real-time re
urrent learning (RTRL [9,17℄) as attendant learning algorithms. The meta-learning 
hara
teristi
 of thesenetworks is only determined by the spe
ial kind of input-target sequen
es asdes
ribed in se
tion 2.1. Both BPTT and RTRL applied to standard re
urrentnets do not yield good meta-learning performan
e as will be seen in se
tion 3.The reason for this poor performan
e is given in se
tion 2.2. In the same se
tion,the use of the Long Short-Term Memory (LSTM [8℄) ar
hite
ture is suggestedto a
hieve better results. Se
tion 2.3 gives an intuition how the \indu
tive biasshift" (\knowledge transfer" ) takes pla
e during meta-learning. The experimen-tal se
tion 3 demonstrates how di�erent learning pro
edures for di�erent problemdomains are automati
ally derived by our meta-learning systems.2 Theoreti
al Considerations2.1 The Data-Setup for Meta-Learning with Re
urrent NetsThis se
tion des
ribes the kind of input-target sequen
es that allowmeta-learningin re
urrent nets. The training data for the meta-learning system is a set of se-quen
es fskg, where sequen
e sk is obtained from a target fun
tion fk. At ea
htime step j during pro
essing the kth sequen
e, the meta-learning system needsthe fun
tion result yk(j) = fk(xk(j)) as a target. The input to the meta-learningsystem 
onsists of the 
urrent fun
tion argument ve
tor xk(j) and a supplemen-tal input whi
h is the previous fun
tion result yk(j�1). The subordinate learningalgorithm needs the previous fun
tion result yk(j�1) so that it 
an learn the pre-sented mapping, e.g. to 
ompute the subordinate model error for input xk(j�1).We 
annot provide the 
urrent target yk(j) as an input to the re
urrent networksin
e we 
annot prevent the model from 
heating by hard-wiring the 
urrenttarget to its output. Figure 1 illustrates the inputs and targets for the di�erentlearning systems.The meta-learning system is penalized at ea
h time point when it does notgenerate the 
orre
t target value, i.e. when the subordinate pro
edure was yetnot able to learn the 
urrent fun
tion. This for
es the meta-learning system toimprove the subordinate algorithm so that it be
omes faster and more exa
t.Figure 2 shows test sequen
es after su

essful meta-learning. New sequen
esstart at 513, 770, and 1027 when the subordinate learning method produ
es



large errors be
ause the new fun
tion is not yet learned. After a few examplesthe subordinate system learned the new fun
tion.The 
hara
teristi
s of the derived subordinate algorithms 
an be in
uen
edby the sequen
e length (more examples per fun
tion give more pre
ise but sloweralgorithms), the error fun
tion, and the ar
hite
ture.2.2 Sele
ting a Re
urrent Ar
hite
ture for Meta-LearningFor simpli
ity we 
onsider one fun
tion f giving the sequen
e (x1; y1) ; : : : ; (xJ ; yJ),where yj = f(xj). All training examples (xj ; yj) 
ontain equal information aboutf . The indi
es 
orrespond to the time steps of the re
urrent net. We want tobias our meta-learning system towards this prior knowledge. The information inthe last output OJ (indi
ated by J) is determined by the entropy H (OJ j XJ ).Here probability variables are denoted by 
apital letters, e.g. X for the input,Y for the target, and O for the output. H(A) is the entropy of A and the
onditional entropies are denoted by H (A j B) The last output is obtained byoJ = g (yj ;xJ ; xj) + �, where g is a bije
tive fun
tion with variable yj and pa-rameters xJ ; xj . � expresses disturban
es during input sequen
e pro
essing. Weassume noisy mappings to avoid in�nite entropies. Negle
ting �, we getH (OJ j XJ ; Xj) = H (Yj j Xj) + EYj ;Xj ;XJ �log������g (Yj ;Xj ; XJ)�Yj ������ ;where p (Yj j xj ; xJ ) = p (Yj j xj), ����g(Yj ;Xj ;XJ )�Xj ��� is the absolute value of the g'sJa
obian determinant, and EA;B;::: is the expe
tation over variables A;B; : : :.The hidden state at time j is sj = u (sj�1; xj ; yj�1) and the output is oj =v (sj). With i < j < J we get�oJ�yj = �oJ�sj+1 �sj+1�yj ; �oJ�yi = �oJ�sj+1 �sj+1�si+1 �si+1�yi ; �sj+1�si+1 = jYl=i+1 �sl+1�sl :Our prior knowledge says that ex
hanging example i and j should not a�e
tthe output information. That is H (OJ j XJ ; Xj) = H (OJ j XJ ; Xi), and also �should not 
hange. In this 
ase Yj = Yi, Xj = Xi, p (Yj j xj) = p (Yi j xi) forxj = xi, and H (Yj j Xj) = H (Yi j Xi). At learn begin with arbitrary weightinitialization EYj ;Xj ��Sj+1�Yj � = EYi;Xi ��Si+1�Yi �. Thus, we obtainEYj ;Xj ;XJ �log �����g(Yj ;Xj ;XJ )�Yj ������EYi;Xi;XJ �log�����g(Yi;Xi;XJ )�Yi ����� = 0, orjXl=i+1EYi;Xi �log������Sl+1�Sl ������ = 0 ; e.g. with �����sl+1�sl ���� = 1 :u restri
ted to a mapping from sl to sl+1 should be volume 
onserving. An ar
hi-te
ture whi
h in
orporates su
h a volume 
onserving substru
ture should out-perform other ar
hite
tures. An ar
hite
ture ful�lling this requirement is LongShort-Term Memory (LSTM [8℄).



2.3 Bayes View on Meta-LearningMeta-learning 
an be viewed as 
onstantly adapting and shifting the hyper-parameters and the prior (\indu
tive bias shift") be
ause the subordinate learn-ing algorithm is adapted to the problem domain during meta-learning. As theexperiments 
on�rm, also the prior of subordinate learning algorithms is data de-pendent. This was suggested in [7℄, too. Therefore di�erent previously observedexamples might lead to di�erent 
urrent learning.3 ExperimentsWe 
hoose a squared error fun
tion for the supervisory learning routine. All net-works possess 3 input and 1 non-re
urrent output units. All non-input units arebiased and have sigmoid a
tivation fun
tions in [0; 1℄. Weights are randomly ini-tialized from [�0:1; 0:1℄. All networks are reset after ea
h sequen
e presentation.3.1 Boolean Fun
tionsHere we 
onsider the set B16 of all Boolean fun
tions with two argu-ments and one result. The linearly separable Boolean fun
tions set B14 =B16 n fXOR;:XORg is used to eval-uate meta-learning ar
hite
tures.B14 ExperimentsWe 
ompared following methods: (A)Elman network [5℄. (B) Re
urrentnetwork with fully re
urrent hiddenlayer trained with Ba
k PropagationThrough Time (BPTT [18, 16℄) trun-
ated after 2 time steps and with RealTime Re
urrent Learning (RTRL [9,17℄). (C) Long Short-Term Memory(LSTM [8℄) with its 
orresponding 0
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edure. The 
ell input is squashed to [�2; 2℄ by a sigmoid and the
ell output is a sigmoid in [�1; 1℄. For input gates the bias is set to �1:0. Table 1gives the results. Only LSTM was su

essful.B16 ExperimentsThe results are shown in Table 2. The mean squared errors per time step(MSEts) are lower than at B14 be
ause the large error at the beginning of anew fun
tion s
ales down with more examples. See Figure 2 for absolute errormeta-learning. The peaks at 513, 770, and 1027 indi
ate large error when thefun
tion 
hanges.3.2 Semi-linear Fun
tionsWe obtain fun
tions 0:5 (1:0 + tanh (w1x1 + w2x2 + w3)) with input ve
tor x =(x1; x2) by 
hoosing ea
h parameter wl randomly from [�1; 1℄. Table 2 presents



ar
h. hid. learning up- � train train test su
-units method date time MSEt MSEt 
essElman 15 Elman b 0.001-0.1 5000 NORe
. 20 BPTT(2) b & o 0.001-0.01 40000 NORe
. 10 RTRL b & o 0.001-0.1 20000 0.22 0.21 NOLSTM 6/6(1) LSTM o 0.001 1000 0.033 0.038 YESTable 1. The B14 experiments for Elman nets (\Elman"), re
urrent networks withfully re
urrent hidden layer (\Re
."), and LSTM. The 
olumns show: (1) ar
hite
ture(\ar
h."), (2) number of hidden units { for LSTM \6/6(1)" means 6 hidden units and6 memory 
ells of size 1 {, (3) learning method { for Elman nets and LSTM theirlearning methods are used, and BPTT is trun
ated after 2 time steps {, (4) bat
h (\b")or online (\o") update, (5) learning rate � { 0.001-0.1 means di�erent learning ratesin this range {, (6) training epo
hs, (7) training and (8) test mean squared error pertime step (\MSEt"), and (9) su

essful training (\su

ess").the results. With more examples per fun
tion the pressure on error redu
tion forthe �rst examples is redu
ed whi
h leads to slower but more exa
t learning.3.3 Quadrati
 Fun
tionsThe problem domain are the quadrati
 fun
tions a x21 + b x22 + 
 x1 x2 +d x1 + e x2 + f s
aled to the interval [0:2; 0:8℄. The parameters a; : : : ; f arerandomly 
hosen from [�1; 1℄. We introdu
ed another hidden layer in the LSTMar
hite
ture whi
h re
eives in
oming 
onne
tions from the �rst standard LSTMhidden layer, and has outgoing 
onne
tions to the output and the �rst hiddenlayer. The �rst hidden layer has no output 
onne
tions. The se
ond hidden layermight serve as a model whi
h is seen by the �rst hidden layer. The standardLSTM learning algorithm is used after the error is propagated ba
k into the �rsthidden layer.LSTM has a 6/12(1) ar
hite
ture in the �rst hidden layer (notation as inTable 1) and 40 units in the se
ond hidden layer (5373 weights). To speed uplearning, we �rst trained on 100 examples per fun
tion and then in
reased thisnumber to 1000. This 
orresponds to a bias towards fast learning algorithms. Theresults are listed in Table 2. The authors are not aware of any iterative learningalgorithm with to the derived subordinate method 
omparable performan
e.3.4 Summary of ExperimentsThe experiments demonstrate that our system automati
ally generates learningmethods from s
rat
h and that the derived online learning algorithms are ex-tremely fast. The test and the training sequen
e for the meta-learning system
ontains rapidly 
hanging dynami
s, i.e. the 
hanging fun
tions, what 
an beviewed as a very non-stationary time series. Our system was able to predi
t well



experi- # fun
- # exam- train train test train time train MSEment tions ples time MSEt MSEt subordinate subordinateB14 128 64 1000 0.033 0.038 6 0.003B16 256 256 800 0.0055 0.0058 6 0.002semil. 128 64 10000 0.0007 0.0008 10 0.07semil. 128 1000 5000 0.0020 0.0025 50 0.05quad. 128 1000 25000 0.00061 0.00068 35 0.02Table 2. LSTM results for the B14, B16, semilinear (\semil.") and quadrati
 fun
tions(\quad."). The 
olumns show: (1) experiment name, (2) number of training sequen
es(\# fun
tions"), (3) length of training sequen
es (examples per fun
tion { \# exam-ples"), (4) training epo
hs, (5) training MSEt, (6) test MSEt, (7) training time for thederived algorithm (\train time subordinate"), and (8) maximal training mean squarederror per example of the subordinate system after training (\train MSE subordinate").The B14 ar
hite
ture was used ex
ept for \quad." (see text for details).on never seen 
hanging dynami
s in the test sequen
e. The non-stationary timeseries predi
tion is based on rapid learning if the dynami
 
hanges.4 Con
lusionPrevious approa
hes to meta-learning are infeasible for a large number of systemparameters. To handle many free parameters this paper presented the appli
ationof gradient des
ent to meta-learning by using re
urrent nets. Our theoreti
alanalysis indi
ated that LSTM is a good meta-learner what was 
on�rmed in theexperiments. With an LSTM net our system derived a learning algorithm ableto approximate any quadrati
 fun
tion after only 35 examples.Our approa
h requires a single training sequen
e, therefore, it may be relevantfor lifelong learning and autonomous robots. The meta-learner proposed in thispaper performed non-stationary time series predi
tion. We demonstrated how ama
hine 
an derive novel, very fast algorithms from s
rat
h.A
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