Learning To Learn Using Gradient Descent

Sepp Hochreiter!, A. Steven Younger!, and Peter R. Conwell?

! Department of Computer Science
University of Colorado, Boulder, CO 80309-0430
% Physics Department
Westminster College, Salt Lake City, Utah

Abstract. This paper introduces the application of gradient descent
methods to meta-learning. The concept of “meta-learning”, i.e. of a sys-
tem that improves or discovers a learning algorithm, has been of in-
terest in machine learning for decades because of its appealing applica-
tions. Previous meta-learning approaches have been based on evolution-
ary methods and, therefore, have been restricted to small models with
few free parameters. We make meta-learning in large systems feasible by
using recurrent neural networks with their attendant learning routines
as meta-learning systems. Our system derived complex well performing
learning algorithms from scratch. In this paper we also show that our
approach performs non-stationary time series prediction.

1 Introduction

» »

Phrases like “I have experience in ...”, “This is similar to ...”, or “This is a
typical case of ...” imply that the person making such statements learns the
task at hand faster or more accurately than an unexperienced human. This
learning enhancement results from solution regularities in a problem domain. In
a conventional machine learning approach the learning algorithm mostly does
not take into account previous learning experiences despite the fact that methods
similar to human reasoning are expected to yield better performance. The use
of previous learning experiences in inductive reasoning is known as “knowledge
transfer” [4,1,14] or “inductive bias shifts” [15, 6, 13].

In the research field of “knowledge transfer” we focus on one of the most
appealing topics: “meta-learning” or “learning to learn” [4,14,11,12]. A meta-
learner searches out and finds appropriate learning algorithms tailored to specific
learning tasks. To find such learning methods, a supervisory algorithm that re-
views and modifies the training algorithm must be added. In contrast to the
subordinate learning scheme, the supervisory routine has a broader scope. It
must ignore the details unique to specific problems, and look for symmetries
over a long time scale, i.e. it must perform “knowledge transfer”. For example
consider a human as the supervisor and a kernel density estimator as the subor-
dinate method. The human has previous experiences with overfitting and tries
to avoid it by adding a bandwidth adaptation and improving the estimator. We
want to automatically obtain such learning method improvements by replacing

the human part with an appropriate system. This automatic system must in-
clude an objective function to judge the performance of the learning algorithm
and rules for the adjustment of the algorithm. Meta-learning is known in the

meta-learning system
subordinate system
; F0) subordinate — recurrent |output - - i out
INpUt -1y system " neural net x() adrj'r;Jos(thIble °
L super- _ fixed learning adjustable
- visory = algorithm learning
target| y(i) | system (BPTT - RTRL) target|y(j-1) | agorithm

Fig. 1. The meta-learning system consists of the supervisory and the subordinate sys-
tem (sequence element j is processed). The subordinate system is a recurrent network.
Its attendant learning algorithm represents the fixed supervisory system. Target func-
tion arguments x are mapped to results y, e.g. y(j) = f(x(j)). The previous function
result y(7 — 1) is supplied to the subordinate system so that it can determinate the
previous error of the subordinate model. Subordinate and supervisory outputs are
identified.

reinforcement learning framework [12,13]. This paper reports on our work on
meta-learning in a supervised learning framework where a model is supposed to
approximate a function after being trained on examples. Our meta-learning sys-
tem consists of the supervisory procedure, which is fixed, and of the adjustable
subordinate system, which must be run on a certain medium (see left hand side
of Figure 1). To exemplify this, for this medium we might have used a Turing
machine (i.e. a computer) where the subordinate model and the subordinate
training routine is represented by a program (see right hand side of Figure 1).
Any changes to the program amount to changes in the subordinate learning algo-
rithm'. However, the output of the discrete Turing machine is not differentiable.
Thus, only deductive or evolutionary strategies can be used to improve the Tur-
ing machine program. Instead of executing the subordinate learning algorithm
with a Turing machine, our method executes the algorithm with a recurrent
neural network in order to get a differentiable output. This is possible because a
(sufficiently large) recurrent neural network can emulate a Turing machine. The
differentiable output allows us to apply gradient descent methods to improve
the subordinate routine. A recurrent network with random initial weights can
be viewed as a learning machine with a very poor subordinate learning algo-
rithm. We hypothesize that gradient based optimization approaches can be used
to derive a learning algorithm from a random starting point.

! Tt should be mentioned that in general, the coded model and the coded learning
algorithm cannot be separated. Accordingly, with the term “learning algorithm” we
mean both.

The capability of recurrent networks to execute the subordinate system was
proved and demonstrated in [3,19]. Several researchers have suggested meta-
learning systems based on neural networks and used genetic algorithms to adjust
the subordinate learning algorithm [2, 10, 19]. Our goal is to obtain complex sub-
ordinate learning algorithms which need a large recurrent network with many
parameters. Genetic algorithms are infeasible due to the large number of com-
putations required. This paper introduces gradient descent for meta-learning to
handle such large systems, and, thus, to provide an optimization technique in
the space of learning algorithms.

Every recurrent neural network architecture with its attendant learning pro-
cedure is a possible meta-learning system. One may choose for example backprop-
agation through time (BPTT [18, 16]) or real-time recurrent learning (RTRL [9,
17]) as attendant learning algorithms. The meta-learning characteristic of these
networks is only determined by the special kind of input-target sequences as
described in section 2.1. Both BPTT and RTRL applied to standard recurrent
nets do not yield good meta-learning performance as will be seen in section 3.
The reason for this poor performance is given in section 2.2. In the same section,
the use of the Long Short-Term Memory (LSTM [8]) architecture is suggested
to achieve better results. Section 2.3 gives an intuition how the “inductive bias
shift” (“knowledge transfer”) takes place during meta-learning. The experimen-
tal section 3 demonstrates how different learning procedures for different problem
domains are automatically derived by our meta-learning systems.

2 Theoretical Considerations

2.1 The Data-Setup for Meta-Learning with Recurrent Nets

This section describes the kind of input-target sequences that allow meta-learning
in recurrent nets. The training data for the meta-learning system is a set of se-
quences {sy}, where sequence s;, is obtained from a target function fj. At each
time step j during processing the kth sequence, the meta-learning system needs
the function result yi(7) = fr(zx (7)) as a target. The input to the meta-learning
system consists of the current function argument vector z(j) and a supplemen-
tal input which is the previous function result y;(j—1). The subordinate learning
algorithm needs the previous function result y;(j—1) so that it can learn the pre-
sented mapping, e.g. to compute the subordinate model error for input zy(j —1).
We cannot provide the current target yx(j) as an input to the recurrent network
since we cannot prevent the model from cheating by hard-wiring the current
target to its output. Figure 1 illustrates the inputs and targets for the different
learning systems.

The meta-learning system is penalized at each time point when it does not
generate the correct target value, i.e. when the subordinate procedure was yet
not able to learn the current function. This forces the meta-learning system to
improve the subordinate algorithm so that it becomes faster and more exact.
Figure 2 shows test sequences after successful meta-learning. New sequences
start at 513, 770, and 1027 when the subordinate learning method produces

large errors because the new function is not yet learned. After a few examples
the subordinate system learned the new function.

The characteristics of the derived subordinate algorithms can be influenced
by the sequence length (more examples per function give more precise but slower
algorithms), the error function, and the architecture.

2.2 Selecting a Recurrent Architecture for Meta-Learning

For simplicity we consider one function f giving the sequence (z1,y1),..., (s, y1),
where y; = f(x;). All training examples (2}, y;) contain equal information about
f- The indices correspond to the time steps of the recurrent net. We want to
bias our meta-learning system towards this prior knowledge. The information in
the last output Oy (indicated by .J) is determined by the entropy H (Os | X).
Here probability variables are denoted by capital letters, e.g. X for the input,
Y for the target, and O for the output. H(A) is the entropy of A and the
conditional entropies are denoted by H (A | B) The last output is obtained by
o7 = g(yj;xs,2;) + €, where g is a bijective function with variable y; and pa-
rameters xy,x;. € expresses disturbances during input sequence processing. We
assume noisy mappings to avoid infinite entropies. Neglecting e, we get

)

‘ is the absolute value of the g’s

0g (Y;; X;, X
H(OJ | XJan) = H(YJ | Xj) + EYj7Xj7XJ (10g <‘ g(]ay,j J)
J

8g(Y;:X;,X
where p (Y; | 25,25) = p(Y; | 75), ‘g(]af;n

Jacobian determinant, and E4 p, .. is the expectation over variables 4, B,
The hidden state at time j is s; = u (sj_1,%;,yj—1) and the output is 0; =
v (s;). With ¢ < j < J we get

%: 60] 88j+1 60] _ aOJ 68j+1 68i+1 68j+1 _ ! asl+1
8yj 88j+1 8yj ’ Byl aSj+1 8si+1 Byl ’ 8si+1 88['

[=i+1

Our prior knowledge says that exchanging example ¢ and j should not affect
the output information. That is H (O; | X5, X;) = H(Os | Xs5,X;), and also €
should not change. In this case Y; = VY, X; = X;, p(Y; | 25) = p(Yi | ;) for
z; = z;, and H (Y; | X;) = H (Vi | X;). At learn begin with arbitrary weight

initialization By, x, (24) = By, x, (255). Thus, we obtain
J 1
)) = 0, or
=1.

EYj7Xj7XJ (lOg ()) - EYi7Xi7XJ (lOg (‘Bﬂy%i)}?xj)

>> =0, eg with ‘aSlH
68[

99(Y55X5,Xs)
aY;

2 0S1+1
I=i+1

u restricted to a mapping from s; to ;41 should be volume conserving. An archi-
tecture which incorporates such a volume conserving substructure should out-
perform other architectures. An architecture fulfilling this requirement is Long
Short-Term Memory (LSTM [8]).

2.3 Bayes View on Meta-Learning

Meta-learning can be viewed as constantly adapting and shifting the hyper-
parameters and the prior (“inductive bias shift”) because the subordinate learn-
ing algorithm is adapted to the problem domain during meta-learning. As the
experiments confirm, also the prior of subordinate learning algorithms is data de-
pendent. This was suggested in [7], too. Therefore different previously observed
examples might lead to different current learning.

3 Experiments

We choose a squared error function for the supervisory learning routine. All net-
works possess 3 input and 1 non-recurrent output units. All non-input units are
biased and have sigmoid activation functions in [0, 1]. Weights are randomly ini-
tialized from [—0.1,0.1]. All networks are reset after each sequence presentation.

3.1 Boolean Functions

Here we consider the set Bjg of all Boolean functions with two argu-
ments and one result. The linearly separable Boolean functions set By =

Bis \ {XOR,-XOR} is used to eval- 1
uate meta-learning architectures. 09
B4 Experiments 08
We compared following methods: (A)
Elman network [5]. (B) Recurrent
network with fully recurrent hidden ,
layer trained with Back Propagation ,
Through Time (BPTT [18,16]) trun- .
cated after 2 time steps and with Real o1 \L h
Time Recurrent Leaming (RTRL [97 906 500 600 700 86 900 1000 1100
17])- (C) Long Short-Term Memory Fig.2: Error vs. time after meta-learning.
(LSTM [8]) with its corresponding
learning procedure. The cell input is squashed to [—2,2] by a sigmoid and the
cell output is a sigmoid in [—1, 1]. For input gates the bias is set to —1.0. Table 1
gives the results. Only LSTM was successful.
B1e¢ Experiments

The results are shown in Table 2. The mean squared errors per time step
(MSEts) are lower than at Bis because the large error at the beginning of a
new function scales down with more examples. See Figure 2 for absolute error
meta-learning. The peaks at 513, 770, and 1027 indicate large error when the
function changes.

0.7

0.6

0.5

3.2 Semi-linear Functions

We obtain functions 0.5 (1.0 + tanh (w21 + wozs + w3)) with input vector z =
(x1,x2) by choosing each parameter w; randomly from [—1,1]. Table 2 presents

arch. | hid. |learning | up- @ train | train | test |suc-

units | method | date time |MSEt|MSEt| cess
Elman| 15 Elman b |0.001-0.1 | 5000 NO
Rec. 20 [BPTT(2)|b & 0[0.001-0.01{40000 NO

Rec. 10 RTRL (b & 0| 0.001-0.1 |20000| 0.22 | 0.21 | NO
LSTM|6/6(1)] LSTM 0 0.001 1000 |0.033|0.038 |YES

Table 1. The Bis experiments for Elman nets (“Elman”), recurrent networks with
fully recurrent hidden layer (“Rec.”), and LSTM. The columns show: (1) architecture
(“arch.”), (2) number of hidden units — for LSTM “6/6(1)” means 6 hidden units and
6 memory cells of size 1 —, (8) learning method — for Elman nets and LSTM their
learning methods are used, and BPTT is truncated after 2 time steps —, (4) batch (“b”)
or online (“0”) update, (5) learning rate o — 0.001-0.1 means different learning rates
in this range —, (6) training epochs, (7) training and (8) test mean squared error per
time step (“MSEt”), and (9) successful training (“success”).

the results. With more examples per function the pressure on error reduction for
the first examples is reduced which leads to slower but more exact learning.

3.3 Quadratic Functions

The problem domain are the quadratic functions a 2 + b x3 + czy o +
dzxy + exzy + f scaled to the interval [0.2,0.8]. The parameters a, ..., f are
randomly chosen from [—1, 1]. We introduced another hidden layer in the LSTM
architecture which receives incoming connections from the first standard LSTM
hidden layer, and has outgoing connections to the output and the first hidden
layer. The first hidden layer has no output connections. The second hidden layer
might serve as a model which is seen by the first hidden layer. The standard
LSTM learning algorithm is used after the error is propagated back into the first
hidden layer.

LSTM has a 6/12(1) architecture in the first hidden layer (notation as in
Table 1) and 40 units in the second hidden layer (5373 weights). To speed up
learning, we first trained on 100 examples per function and then increased this
number to 1000. This corresponds to a bias towards fast learning algorithms. The
results are listed in Table 2. The authors are not aware of any iterative learning
algorithm with to the derived subordinate method comparable performance.

3.4 Summary of Experiments

The experiments demonstrate that our system automatically generates learning
methods from scratch and that the derived online learning algorithms are ex-
tremely fast. The test and the training sequence for the meta-learning system
contains rapidly changing dynamics, i.e. the changing functions, what can be
viewed as a very non-stationary time series. Our system was able to predict well

experi-|# func-|# exam-| train | train test | train time | train MSE
ment | tions ples | time | MSEt | MSEt |subordinate|subordinate
Bis4 128 64 1000 | 0.033 | 0.038 6 0.003
Bis 256 256 800 | 0.0055 | 0.0058 6 0.002
semil. | 128 64 10000 0.0007 | 0.0008 10 0.07
semil. | 128 1000 | 5000 | 0.0020 | 0.0025 50 0.05
quad. | 128 1000 |25000{0.00061{0.00068 35 0.02

Table 2. LSTM results for the Bia, Bis, semilinear (“semil.”) and quadratic functions
(“quad.”). The columns show: (1) experiment name, (2) number of training sequences
(“# functions”), (3) length of training sequences (examples per function — “# exam-
ples”), (4) training epochs, (5) training MSEt, (6) test MSEt, (7) training time for the
derived algorithm (“train time subordinate”), and (8) mazimal training mean squared
error per ezample of the subordinate system after training (“train MSE subordinate”).
The Bia architecture was used except for “quad.” (see text for details).

on never seen changing dynamics in the test sequence. The non-stationary time
series prediction is based on rapid learning if the dynamic changes.

4 Conclusion

Previous approaches to meta-learning are infeasible for a large number of system
parameters. To handle many free parameters this paper presented the application
of gradient descent to meta-learning by using recurrent nets. Our theoretical
analysis indicated that LSTM is a good meta-learner what was confirmed in the
experiments. With an LSTM net our system derived a learning algorithm able
to approximate any quadratic function after only 35 examples.

Our approach requires a single training sequence, therefore, it may be relevant
for lifelong learning and autonomous robots. The meta-learner proposed in this
paper performed non-stationary time series prediction. We demonstrated how a
machine can derive novel, very fast algorithms from scratch.

Acknowledgments
The Deutsche Forschungsgemeinschaft supported this work (Ho 1749/1-1).

References

1. R. Caruana. Learning many related tasks at the same time with backpropagation.
In G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in Neural Information
Processing Systems 7, pages 657-664. The MIT Press, 1995.

2. D. Chalmers. The evolution of learning: An experiment in genetic connectionism.
In D. S. Touretzky, J. L. Elman, T. J. Sejnowski, and G. E. Hinton, editors, Proc.
of the 1990 Con. Models Summer School, pages 81-90. Morgan Kaufmann, 1990.

3. N. E. Cotter and P. R. Conwell. Fixed-weight networks can learn. In Int. Joint
Conference on Neural Networks, volume II, pages 553-559. IEEE, NY, 1990.

(G20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. H. Ellis. Transfer of Learning. MacMillan, New York, NY, 1965.

J. L. Elman. Finding structure in time. Technical Report CRL 8801, Center for
Research in Language, University of California, San Diego, 1988.

D. Haussler. Quantifying inductive bias: AI learning algorithms and Valiant’s
learning framework. Artificial Intelligence, 36:177-221, 1988.

S. Hochreiter and J. Schmidhuber. Flat minima. Neural Comp., 9(1):1-42, 1997.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735-1780, 1997.

A. J. Robinson and F. Fallside. The utility driven dynamic error propagation
network. Technical Report CUED /F-INFENG/TR.1, Camb. Uni. Eng. Dep., 1987.
T. P. Runarsson and M. T. Jonsson. Evolution and design of distributed learning
rules. In 2000 IEEE Symposium of Combinations of Evolutionary Computing and
Neural Networks, San Antonio, Texas, USA, page 59. 2000.

J. Schmidhuber. Evolutionary principles in self-referential learning, or on learning
how to learn: The meta-meta-... hook. Inst. fiir Inf., Tech. Univ. Miinchen, 1987.

J. Schmidhuber, J. Zhao, and M. Wiering. Simple principles of metalearning.
Technical Report IDSTA-69-96, IDSTA, 1996.

J. Schmidhuber, J. Zhao, and M. Wiering. Shifting inductive bias with success-
story algorithm, adaptive levin search, and incremental self-improvement. Machine
Learning, 28:105-130, 1997.

S. Thrun and L. Pratt, editors. Learning To Learn. Kluwer Academic Pub., 1997.
P. Utgoft. Shift of bias for inductive concept learning. In R. Michalski, J. Carbonell,
and T. Mitchell, editors, Machine Learning, volume 2. Morgan Kaufmann, 1986.

P. J. Werbos. Generalization of backpropagation with application to a recurrent
gas market model. Neural Networks, 1, 1988.

R. J. Williams and D. Zipser. A learning algorithm for continually running fully
recurrent networks. Technical Report ICS 8805, Univ. of Cal., La Jolla, 1988.

R. J. Williams and D. Zipser. Gradient-based learning algorithms for recurrent
networks and their computational complexity. In Y. Chauvin and D. E. Rumelhart,
editors, Back-propagation: Theory, Architectures and Applications. Hillsdale, 1992.
A. S. Younger, P. R. Conwell, and N. E. Cotter. Fixed-weight on-line learning.
IEEE-Transactions on Neural Networks, 10(2):272-283, 1999.

