A Discrete Probabilistic Memory Model for
Discovering Dependencies in Time

Sepp Hochreiter and Michael C. Mozer

Department of Computer Science
University of Colorado
Boulder, CO 80309-0430

{hochreit,mozer}@cs.colorado.edu

Abstract. Many domains of machine learning involve discovering de-
pendencies and structure over time. In the most complex of domains,
long-term temporal dependencies are present. Neural network models
such as LSTM have been developed to deal with long-term dependencies,
but the continuous nature of neural networks is not well suited to dis-
crete symbol processing tasks. Further, the mathematical underpinnings
of neural networks are unclear, and gradient descent learning of recurrent
neural networks seems particularly susceptible to local optima. We intro-
duce a novel architecture for discovering dependencies in time. The archi-
tecture is formed by combining two variants of a hidden Markov model
(uMmM)—the factorial HMM and the input-output HMM—and adding a
further strong constraint that requires the model to behave as a latch-
and-store memory (the same constraint exploited in LSTM). This model,
called an MIOFHMM, can learn structure that other variants of the HMM
cannot, and can generalize better than LSTM on test sequences that have
different statistical properties (different lengths, different types of noise)
than training sequences. However, the MIOFHMM is slower to train and is
more susceptible to local optima than LSTM.

1 Introduction

Many domains of machine learning involve discovering dependencies and struc-
ture over time. Example domains include speech recognition, process control,
and time series prediction. In the most complex of domains, long-term temporal
dependencies are present. A long-term dependency is one in which the observa-
tion at time ¢y, o(t,), and the observation at some time in the future, o(t,), are
dependent, where t, > t,, and there is no time t,, t, < t, < ty, such that
the dependency between the o(t,) and o(t,) can be described in terms of the
dependency between o(t,) and o(t,) plus the dependency between o(t,,) and
o(t,). To capture the structure present in the temporal sequence, it is therefore
necessary to construct a memory holding information about o(t,) during the
time intervening between the observations.

Hidden Markov Models (HMMs) and Recurrent Neural Networks (RNNs) are
natural candidates to encode long-term dependencies. However, theoretical and



empirical work argues that learning these dependencies is difficult; for RNNs, see
[8,4,6], and for HMMs, see [2]. A constrained form of the RNN architecture, called
LSTM, has been proposed to learn long-term dependencies using standard learn-
ing procedures such as gradient descent [7]. LSTM succeeds because it imposes
an inductive bias via hidden units with fixed linear self-recurrent connections of
strength 1.0. These units behave as memory cells, responding to learned inputs,
and then remaining active indefinitely.

LSTM has three weaknesses. First, LSTM was designed to address many tasks
that are intrinsically discrete—they involve classifying sequences of input sym-
bols. A neural network with continuous activation levels does not seem well
suited to a discrete domain. Second, gradient-descent learning is slow and in
the case of RNNs is particularly prone to encountering local optima. Third, the
mathematical underpinnings of neural networks are shaky; for example, the se-
mantics of “activation levels” are ill defined. None of these weaknesses are found
in HMMs: HMMs are well suited for discrete inputs and outputs, they use EM
procedures for training instead of gradient descent, the HMM has a probabilistic
interpretation.

In this paper, we take the inductive bias provided by the LsTM model and
incorporate it into a HMM, with the goal of obtaining the benefits of each. Rather
than abandoning neural networks for the increasingly popular graphical models,
we believe it valuable to exploit the inductive biases discovered by the RNN com-
munity in the design of constrained variations of HMMs. The constraint suggested
by LSTM involves a fixed state transition probability matrix that implements a
latch-and-hold memory.

2 A Discrete Probabilistic Memory Model

A standard HMM generates output sequences. To handle temporally-varying in-
put as well as temporally-varying output, we use an extension known as an
input-output HMM [3], in which the state at ¢, s(t) is conditionally dependent
on the previous state, s(t — 1), as well as the current input, z(¢), and the out-
put, y(t), is conditionally dependent on s(t) and z(t). Further, we allow for
a state with compositional structure using a factorial HMM [5]. The particular
sort of compositional state we explore in our model is one consisting multiple
non-resettable flip-flops—memory elements which can be triggered by particular
inputs and will remain unchanged in time thereafter; this same sort of latch is
the heart of LsTM. Thus, our model is an memory-based input-output factorial
HMM, which we shorten to MIOFHMM.

Consider factorizing the state into H components, denoted s; ...sp, each
of which we wish to behave as a latch-and-hold memory. Each component is
a multinomial random variable with IV values. Initially, all components have
value U for “uncommitted”; various inputs can trigger the component to take
on values 2, ...,N. The constraint on the MIOFHMM is to fix the state transition
function, p(s;(t) = al|s1(t — 1) = by,...,sg(t — 1) = by, x(t) = ¢), to Jap, if
b; # U, where ¢ is the Kronecker delta. Once component s; takes on values



2...N, the component can not change its value—it behaves as a memory for
the occurrence of an input event. Thus, it has N — 1 memory states.

The restriction on the state transition function that allows each component
to store its value indefinitely should have significant benefits in learning: the fixed
transition probabilities prevent the transition matrix from becoming irreducible,
and hence the limitations on learning temporal dependencies discussed in [2] are
not applicable. Each component is further restricted in that it cannot be reset
to U or any other value, and therefore cannot be re-used. However, we skirt this
limitation by allowing multiple components that can be used to store different
facets of the input sequence.

To avoid the possibility that all hidden variables become committed at a
certain time point and the MIOFHMM becomes unable to track dynamics, we could
add conventional hidden variables, i.e., hidden variables without constraints.
Another possibility is to soften the constraints by adding a penalty for transitions
that were neither 0 or 1, allowing learning to produce non-binary transition
probabilities if it was warranted by improved performance.

2.1 Training the MIOFHMM

Training data for the MIOFHMM consists of a set of input and output sequence
pairs. The goal of training is to determine model parameters—discrete condi-
tional probability distributions—that maximize the likelihood of the training
output sequences given the corresponding training input sequences.

We train the MIOFHMM using the Baum-Welch algorithm [1]. The complex-
ity of the MIOFHMM training procedure is exponential in the number of mem-
ory components. Ignoring the memory constraint, the complexity of the Baum-
Welsh algorithm for the MIOFHMM is O (T N2H), where T is the sequence
length. However, exploiting the memory constraint reduces the complexity to
O(T 2N — 1]H) which is a savings of a factor (N/2). Approximations to Baum-
Welsh updating [5] might be used to further accelerate training, although we did
not explore such approximations in the present work.

3 Experiments

We perform two sets of experiments. First, we compare our MIOFHMM to conven-
tional TOoHMMs and TOFHMMSs on the detection of long-term dependencies. The
tasks involve a nondeterministic mapping from input sequences to output se-
quences. Second, we compare the generalization performance of our MIOFHMM
to the LSTM recurrent neural network. We use a classification task in which the
model must produce an output indicating class membership following the entire
input sequence. Each result we present is the average of twenty replications of a
model, excluding replications that yielded local optima (as determined by a val-
idation set). In all experiments, the HMM conditional distributions are initialized
randomly.



3.1 Comparing the MIOFHMM, IOFHMM, and IOHMM

We begin with a study of learning long-term dependencies using a simple latch
task that has been used to test various approaches to this problem, e.g., [4, 6].
The essence of the task is that a sequence of inputs are presented, beginning
with one of two symbols, A or B, and after a variable number of time steps, the
model must output a corresponding symbol—U if the original input was A, or
V if the original input was B. Thus, the task requires memorizing the original
input. The end of the input sequence is marked by the symbol E, and in the
intervening time steps, symbols are chosen at random from {C,D}. Except for
the final output symbol, any output from {X,Y,Z} is allowed. We vary T, the
number of time steps intervening between the first input and the final output. A
sample input sequence for T' = 6 is A-C-C-D-D—-C-E, and an allowed output
sequence for this input is Y-Z-X-Y-Z-Y-U. Five hundred sequences were
generated for training and for validation.

We compared the MIOFHMM against the IOHMM and the IOFHMM. The IOHMM
is given 5 hidden states, and the IOFHMM and MIOFHMM are given 2 components
with 5 hidden states each. (We also tested a version of the MIOFHMM with a single
component—essentially an MIOHMM—and the performance was comparable to
that of the MIOFHMM.) For each simulation, we record the number of updates
required for the model to produce the correct output on the final time step for
all examples in the the validation set. If a model does not process the validation
set correctly within reasonable number of updates (multiple standard deviations
above the mean), we treat the run as having become stuck in a local optimum.
We report the mean number of update required for learning and the frequency
of becoming stuck in local optima.

Figure 1 shows the number of up-
dates required to train the three mod-
els, as a function of the sequence
length 7. Experiments with the 10-
HMM and TOFHMM with T° > 5 were
terminated due to lack of CPU cy-
cles. The training time for the TOHMM
and IOFHMM appears to scale expo- MIOEHMM
nentially with the sequence length for e
the ToEMM and IOFHMM, consistent sequence length (T)
with the theoretical results in [2], but

600

a
=]
=]

IOHMM

'
o
=]

IOFHMM

N
o
=]

number of updates
&8
o

[N
o
=]

S

Fig. 1: Number of updates required to learn

the latch task for three architectures, as a

training time for the MIOFHMM 1.s flat. function of the sequence length (the number
The 10HMM and TOFHMM also yielded of time steps over which an input element

many local optima: For T' = 5, the myust be remembered).

I0HMM and TOFHMM discovered local

optima on 35% and 85% of training runs, respectively, whereas the MIOFHMM
yielded no local optima. The MIOFHMM clearly outperforms conventional HMM
models on tasks involving long-term temporal dependencies. The key feature
necessary for the success of the MIOFHMM is the constraint that the state com-
ponents behave as memory, which is absent from the otherwise identical IOFHMM.



In a second study, we used another task that has previously been explored
in the neural net community [6]. The task involves discovering a classification
rule for input sequences that depends on the temporal order of events. Each
sequence begins with the start symbol S and terminates with the end symbol E.
Embedded in each sequence are two critical symbols chosen with replacement
from {A, B}. All other input symbols are random, chosen with replacement from
{C,D,F, G}. The input alphabet thus consists of eight symbols—two start sym-
bols, two critical symbols, and four random symbols. A sample input sequence is
S—-C-A-G-B-F-E. The classification of the sequence depends on the identity
and order of the two critical symbols: sequences containing an A followed by a
B are assigned to class 1, a B followed by an A to class 2, an A followed by an
A to class 3, and a B followed by a B to class 4. On receiving the final input, the
task involved outputting the class label; prior to this input, the task required
outputting a special “no class” label.

We compared the IOFHMM to the MIOFHMM. The models had two state com-
ponents, each having two memory states. We trained the models with 500 exam-
ples, and used a validation set of 500 further examples to determine when the
model had learned the task. The IOFHMM was never able to learn the task to a
criterion of 0 classification errors. Although the MIOFHMM ran into local optima
on 65% of trials, it needed only 162 model-parameter updates on average to learn
on the remaining 35%. (The local optima obtained by the MIOFHMM in this and
other experiments is actually a form of overfitting: the model performs very well
on the training set, but not on the validation set. But we call this a local opti-
mum nonetheless because there is a solution for which the model would perform
better on training and validation set.) Regardless, the MIOFHMM can succeed on
a difficult sequence-ordering task where the IOFHMM fails, due to the constraint
imposed on the MIOFHMM that it implement a latch-and-hold memory.

To summarize our two experiments, the latch-and-hold memory constraint
imposes a strong inductive bias on the MIOFHMM, which allows it to learn more
efficiently and reliably than models such as the IOFHMM and I0OHMM which do not
exploit this constraint. Of course, the benefit extends only to tasks for which this
bias is appropriate—tasks involving storing and remembering sequence elements
and their ordering.

3.2 Comparison of MIOFHMMs and LSTM

The experiments in this section explore the generalization capabilities of the
MIOFHMM as compared to those of LSTM [6], the neural network model with
a latch-and-hold memory constraint. We consider a generalization task that is
particularly difficult for machine learning systems, and for which no guaran-
tees of good generalization are possible—where the distributions from which the
training and test examples are drawn differ from one another.

In these experiments, we study a variation of the latch task. The input at each
time consists of two real-valued elements, a value and a marker, both in [0,1].
The marker having value 1.0 indicates that the current value is to be stored, and



the marker having value 0.0 indicates that the previously stored value should be
retrieved and outputted; a marker value of 0.5 indicates “no action”.

Because the MIOFHMM is intrinsically discrete, input values were quantized
into one of E equal width intervals in [0,1]. For example, with £ = 10, the
intervals were [0,.1], [.1,.2], etc. Each interval corresponded to a unique input
value, which was crossed with the three distinct markers for a total of 3E input
symbols. The output consisted of E symbols. The LSTM, in contrast, required
only two continuous inputs and one continuous output. Its output was judged
to be correct if it lay in the correct interval. Although the two architectures are
quite different, it is not clear whether one has an advantage over the other on
this task. The MIOFHMM benefits from the fact that it receives inputs that are
quantized in a task-appropriate manner, whereas the LSTM benefits from the
fact that its input has a compositional structure which is task appropriate.

In a first experiment, we trained the models on sequences with lengths be-
tween 2 and 10, sampled uniformly, with £ = 10 intervals, and with the value
to be stored always the first element of the sequence. Both models were supplied
with 1000 training examples and 1000 validation examples. The models were
tested on 1000 generalization examples for various lengths between 10 and 1000.
Thus, the challenge was to extrapolate to longer sequences, and hence, to form
a memory that could persist over long time intervals.

For this experiment, LSTM was provided with two memory cells. Weights in
the LSTM were initialized randomly from [—.1,.1], with an initial bias of -1.0 on
each input gate. A learning rate of 0.1 was used. Following each sequence, the
weights were updated and the network was reset. The MIOFHMM utilized one
state component with 10 memory states. For both models, training continued
until all examples in the validation set were classified correctly (i.e., in the correct
interval); if this did not occur within a reasonable amount of time, then the
training run was considered to have become stuck in a local optimum.

80
o LSTM o™

LSTM learned the task efficiently
and reliably: training took was 36 sec-
onds of CPU time on a 400 MHz
PC (corresponding to 130 training
epochs), and never encountered local
optima. In contrast, the MIOFHMM re- 20} /
quired 77 minutes of CPU time (15 1| /

60
50
40
30

% error on test set

updates), and became stuck in local ol MIOFHMM
maxima on 47% of runs. In testing, 101 = —— = e =
however, the MIOFHMM outshone the sequence length

Fig. 2: Generalization error of the LsTM
and the MIOFHMM on a latch task with test
sequences longer than the longest training
sequence.

LSTM. Figure 2 shows generalization
error on test sequences with lengths
ranging from 10 to 1000 elements. The
test sequence length can be extended
to 1000 without any affect on performance for the MIOFHMM, whereas the error
rate increases rapidly for the L.STM for sequences having lengths greater than 30.



In a second experiment, we simplified the latch task by presenting sequences
whose element to be stored had only F = 2 discriminable values, but made the
task more difficult in that the value to be stored could occur on any of the first
5 sequence elements. Sequences ranged in length from 5 to 20. As in the first
experiment, a marker input of 1.0 was a signal to store an input, and a marker
input of 0.0 was a signal to retrieve the stored value. However, we modified the
task by replacing the neutral marker value of 0.5 with values ranging from 0.025
to 0.975. In the training set, the neutral marker value was randomly chosen from
a uniform distribution over 39 discrete values evenly spaced in [0.025, 0.975].
In the test set, the neutral marker value was randomly chosen from a rectified,
discretized Gaussian distribution over the 39 discrete values. The variance of the
Gaussian was chosen based on a parameter a, such that with 99% probability
the a largest values will be chosen. Consequently, as a is decreased, more marker
values in the sequence will become confused with the store (1.0) markers.

As in the first experiment, LsTM  *°
training was faster and more reliable:
LSTM required 7.75 minutes on av-
erage to train (976 epochs), whereas
the MIOFHMM required 19 hours (50
updates). LSTM never encountered lo-
cal optima, whereas MIOFHMM did )
on 15% of trials. However, in terms T MIOFHMM
of generalization performance, MIO- e T T —
FHMM once again beat out LSTM. Fig- | fowelevel@
ure 3 shows percentage error on a test Fig. 3: Generalization error of the. LSTM

. . and the MIOFHMM on a latch task with in-
set as a function of the noise parame- creased noise.
ter a. Even for large values of a, MIO-
FHMM produces fewer errors than LSTM, but as a is decreased, LSTM errors
increase dramatically. For small a, the neutral marker was more likely to be a
value close to that of the store marker, and consequently, acted as a lure to con-
fuse LSTM. MIOFHMM benefits from the fact that the marker 1.0 and the marker
0.975 are two different symbols, and the similarity structure of the numerical
values is therefore irrelevant to performance.

To summarize these two experiments, the discrete nature of the MIOFHMM al-
lows it to reliably hold information for longer periods of time than the continuous
LSTM, and also prevents the MIOFHMM from becoming confused by noise, even
noise whose statistics in the training and test sets are quite different. Although
the two experimental tasks we presented are somewhat contrived, they empha-
size that the discrete nature of the MIOHMM can be a virtue that distinguishes
from any continuous recurrent neural network model.

LSTM

=
n

g
o

% error on test set

4
3

2 0



4 Conclusions

In this paper, we have introduced a novel architecture for classifying input se-
quences and for mapping input sequences to output sequences, the MIOFHMM.
The MIOFHMM combines two of the virtues of hidden Markov models—the ex-
plicit probabilistic framework and the powerful Baum-Welsh training procedure—
with a form of inductive bias found to be valuable in recurrent neural network
models such as LSTM. The bias forces the MIOFHMM to behave as a latch-and-
store memory. We explored four tasks that involved discovering key elements
in an input sequence whose detection or temporal order was critical to perfor-
mance. The MIOFHMM performed well on all these tasks. In contrast, variants of
the architecture without the memory constraint—the 10HMM and the IOFHMM—
scaled poorly as a function of the temporal span of dependencies. Further, the
discrete nature of the MIOFHMM makes it particularly well suited to reaching
stable, robust fixed points in state space, and consequently, it appears less sus-
ceptible than a continuous model like LSTM to disruption by noise, either in the
form of interspersed irrelevant sequence elements or variability in the input at a
particular point in time. The one weakness of the MIOFHMM is that—in contrast
to our original intuitions—it takes significantly longer than LSTM to train and is
more susceptible to local optima.

Acknowledgments
The work was supported by the Deutsche Forschungsgemeinschaft (Ho 1749/1-
1), McDonnell-Pew award 97-18, and NSF award IBN-9873492.

References

1. L. E. Baum. An inequality and associated maximization technique in statistical
estimation for probabilistic functions of a Markov process. Inequalities, 3:1-8, 1972.

2. Y. Bengio and P. Frasconi. Diffusion of context and credit information in markovian
models. Journal of Artificial Intelligence Research, 3:249-270, 1995.

3. Y. Bengio and P. Frasconi. An input output HMM architecture. In G. Tesauro,
D. S. Touretzky, and T. K. Leen, editors, Advances in Neural Information Processing
Systems 7, pages 427-434. MIT Press, Cambridge MA, 1995.

4. Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gra-
dient descent is difficult. IEEE Trans. on Neural Networks, 5(2):157-166, 1994.

5. Z. Ghahramani and M. I. Jordan. Factorial hidden markov models. Machine Learn-
ing, 29:245, 1997.

6. S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735-1780, 1997.

7. S. Hochreiter and J. Schmidhuber. LSTM can solve hard long time lag problems. In
M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural Information
Processing Systems 9, pages 473-479. MIT Press, Cambridge MA, 1997.

8. M. C. Mozer. Induction of multiscale temporal structure. In J. E. Moody, S. J.
Hanson, and R. P. Lippman, editors, Advances in Neural Information Processing
Systems 4, pages 275—282. San Mateo, CA: Morgan Kaufmann, 1992.



