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olorado.eduAbstra
t. Many domains of ma
hine learning involve dis
overing de-penden
ies and stru
ture over time. In the most 
omplex of domains,long-term temporal dependen
ies are present. Neural network modelssu
h as lstm have been developed to deal with long-term dependen
ies,but the 
ontinuous nature of neural networks is not well suited to dis-
rete symbol pro
essing tasks. Further, the mathemati
al underpinningsof neural networks are un
lear, and gradient des
ent learning of re
urrentneural networks seems parti
ularly sus
eptible to lo
al optima. We intro-du
e a novel ar
hite
ture for dis
overing dependen
ies in time. The ar
hi-te
ture is formed by 
ombining two variants of a hidden Markov model(hmm)|the fa
torial hmm and the input-output hmm|and adding afurther strong 
onstraint that requires the model to behave as a lat
h-and-store memory (the same 
onstraint exploited in lstm). This model,
alled an miofhmm, 
an learn stru
ture that other variants of the hmm
annot, and 
an generalize better than lstm on test sequen
es that havedi�erent statisti
al properties (di�erent lengths, di�erent types of noise)than training sequen
es. However, the miofhmm is slower to train and ismore sus
eptible to lo
al optima than lstm.1 Introdu
tionMany domains of ma
hine learning involve dis
overing dependen
ies and stru
-ture over time. Example domains in
lude spee
h re
ognition, pro
ess 
ontrol,and time series predi
tion. In the most 
omplex of domains, long-term temporaldependen
ies are present. A long-term dependen
y is one in whi
h the observa-tion at time tu, o(tu), and the observation at some time in the future, o(tv), aredependent, where tv � tu, and there is no time tw, tu < tw < tv, su
h thatthe dependen
y between the o(tu) and o(tv) 
an be des
ribed in terms of thedependen
y between o(tu) and o(tw) plus the dependen
y between o(tw) ando(tv). To 
apture the stru
ture present in the temporal sequen
e, it is thereforene
essary to 
onstru
t a memory holding information about o(tu) during thetime intervening between the observations.Hidden Markov Models (hmms) and Re
urrent Neural Networks (rnns) arenatural 
andidates to en
ode long-term dependen
ies. However, theoreti
al and



empiri
al work argues that learning these dependen
ies is diÆ
ult; for rnns, see[8, 4, 6℄, and for hmms, see [2℄. A 
onstrained form of the rnn ar
hite
ture, 
alledlstm, has been proposed to learn long-term dependen
ies using standard learn-ing pro
edures su
h as gradient des
ent [7℄. lstm su

eeds be
ause it imposesan indu
tive bias via hidden units with �xed linear self-re
urrent 
onne
tions ofstrength 1.0. These units behave as memory 
ells, responding to learned inputs,and then remaining a
tive inde�nitely.lstm has three weaknesses. First, lstm was designed to address many tasksthat are intrinsi
ally dis
rete|they involve 
lassifying sequen
es of input sym-bols. A neural network with 
ontinuous a
tivation levels does not seem wellsuited to a dis
rete domain. Se
ond, gradient-des
ent learning is slow and inthe 
ase of rnns is parti
ularly prone to en
ountering lo
al optima. Third, themathemati
al underpinnings of neural networks are shaky; for example, the se-manti
s of \a
tivation levels" are ill de�ned. None of these weaknesses are foundin hmms: hmms are well suited for dis
rete inputs and outputs, they use EMpro
edures for training instead of gradient des
ent, the hmm has a probabilisti
interpretation.In this paper, we take the indu
tive bias provided by the lstm model andin
orporate it into a hmm, with the goal of obtaining the bene�ts of ea
h. Ratherthan abandoning neural networks for the in
reasingly popular graphi
al models,we believe it valuable to exploit the indu
tive biases dis
overed by the rnn 
om-munity in the design of 
onstrained variations of hmms. The 
onstraint suggestedby lstm involves a �xed state transition probability matrix that implements alat
h-and-hold memory.2 A Dis
rete Probabilisti
 Memory ModelA standard hmm generates output sequen
es. To handle temporally-varying in-put as well as temporally-varying output, we use an extension known as aninput-output hmm [3℄, in whi
h the state at t, s(t) is 
onditionally dependenton the previous state, s(t � 1), as well as the 
urrent input, x(t), and the out-put, y(t), is 
onditionally dependent on s(t) and x(t). Further, we allow fora state with 
ompositional stru
ture using a fa
torial hmm [5℄. The parti
ularsort of 
ompositional state we explore in our model is one 
onsisting multiplenon-resettable 
ip-
ops|memory elements whi
h 
an be triggered by parti
ularinputs and will remain un
hanged in time thereafter; this same sort of lat
h isthe heart of lstm. Thus, our model is an memory-based input-output fa
torialHMM, whi
h we shorten to miofhmm.Consider fa
torizing the state into H 
omponents, denoted s1 : : : sH , ea
hof whi
h we wish to behave as a lat
h-and-hold memory. Ea
h 
omponent isa multinomial random variable with N values. Initially, all 
omponents havevalue U for \un
ommitted"; various inputs 
an trigger the 
omponent to takeon values 2; : : : ;N. The 
onstraint on the miofhmm is to �x the state transitionfun
tion, p(si(t) = ajs1(t � 1) = b1; : : : ; sH(t � 1) = bH ; x(t) = 
), to Æa;bi ifbi 6= U, where Æ is the Krone
ker delta. On
e 
omponent si takes on values



2 : : :N, the 
omponent 
an not 
hange its value|it behaves as a memory forthe o

urren
e of an input event. Thus, it has N � 1 memory states.The restri
tion on the state transition fun
tion that allows ea
h 
omponentto store its value inde�nitely should have signi�
ant bene�ts in learning: the �xedtransition probabilities prevent the transition matrix from be
oming irredu
ible,and hen
e the limitations on learning temporal dependen
ies dis
ussed in [2℄ arenot appli
able. Ea
h 
omponent is further restri
ted in that it 
annot be resetto U or any other value, and therefore 
annot be re-used. However, we skirt thislimitation by allowing multiple 
omponents that 
an be used to store di�erentfa
ets of the input sequen
e.To avoid the possibility that all hidden variables be
ome 
ommitted at a
ertain time point and themiofhmm be
omes unable to tra
k dynami
s, we 
ouldadd 
onventional hidden variables, i.e., hidden variables without 
onstraints.Another possibility is to soften the 
onstraints by adding a penalty for transitionsthat were neither 0 or 1, allowing learning to produ
e non-binary transitionprobabilities if it was warranted by improved performan
e.2.1 Training the MIOFHMMTraining data for the miofhmm 
onsists of a set of input and output sequen
epairs. The goal of training is to determine model parameters|dis
rete 
ondi-tional probability distributions|that maximize the likelihood of the trainingoutput sequen
es given the 
orresponding training input sequen
es.We train the miofhmm using the Baum-Wel
h algorithm [1℄. The 
omplex-ity of the miofhmm training pro
edure is exponential in the number of mem-ory 
omponents. Ignoring the memory 
onstraint, the 
omplexity of the Baum-Welsh algorithm for the miofhmm is O �T N2H�, where T is the sequen
elength. However, exploiting the memory 
onstraint redu
es the 
omplexity toO(T [2N � 1℄H) whi
h is a savings of a fa
tor (N=2)H . Approximations to Baum-Welsh updating [5℄ might be used to further a

elerate training, although we didnot explore su
h approximations in the present work.3 ExperimentsWe perform two sets of experiments. First, we 
ompare our miofhmm to 
onven-tional iohmms and iofhmms on the dete
tion of long-term dependen
ies. Thetasks involve a nondeterministi
 mapping from input sequen
es to output se-quen
es. Se
ond, we 
ompare the generalization performan
e of our miofhmmto the lstm re
urrent neural network. We use a 
lassi�
ation task in whi
h themodel must produ
e an output indi
ating 
lass membership following the entireinput sequen
e. Ea
h result we present is the average of twenty repli
ations of amodel, ex
luding repli
ations that yielded lo
al optima (as determined by a val-idation set). In all experiments, the hmm 
onditional distributions are initializedrandomly.



3.1 Comparing the MIOFHMM, IOFHMM, and IOHMMWe begin with a study of learning long-term dependen
ies using a simple lat
htask that has been used to test various approa
hes to this problem, e.g., [4, 6℄.The essen
e of the task is that a sequen
e of inputs are presented, beginningwith one of two symbols, A or B, and after a variable number of time steps, themodel must output a 
orresponding symbol|U if the original input was A, orV if the original input was B. Thus, the task requires memorizing the originalinput. The end of the input sequen
e is marked by the symbol E, and in theintervening time steps, symbols are 
hosen at random from fC;Dg. Ex
ept forthe �nal output symbol, any output from fX;Y;Zg is allowed. We vary T , thenumber of time steps intervening between the �rst input and the �nal output. Asample input sequen
e for T = 6 is A{C{C{D{D{C{E, and an allowed outputsequen
e for this input is Y{Z{X{Y{Z{Y{U. Five hundred sequen
es weregenerated for training and for validation.We 
ompared the miofhmm against the iohmm and the iofhmm. The iohmmis given 5 hidden states, and the iofhmm and miofhmm are given 2 
omponentswith 5 hidden states ea
h. (We also tested a version of the miofhmm with a single
omponent|essentially an miohmm|and the performan
e was 
omparable tothat of the miofhmm.) For ea
h simulation, we re
ord the number of updatesrequired for the model to produ
e the 
orre
t output on the �nal time step forall examples in the the validation set. If a model does not pro
ess the validationset 
orre
tly within reasonable number of updates (multiple standard deviationsabove the mean), we treat the run as having be
ome stu
k in a lo
al optimum.We report the mean number of update required for learning and the frequen
yof be
oming stu
k in lo
al optima.Figure 1 shows the number of up-dates required to train the three mod-els, as a fun
tion of the sequen
elength T . Experiments with the io-hmm and iofhmm with T > 5 wereterminated due to la
k of CPU 
y-
les. The training time for the iohmmand iofhmm appears to s
ale expo-nentially with the sequen
e length forthe iohmm and iofhmm, 
onsistentwith the theoreti
al results in [2℄, buttraining time for the miofhmm is 
at.The iohmm and iofhmm also yieldedmany lo
al optima: For T = 5, theiohmm and iofhmm dis
overed lo
al
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MIOFHMMFig. 1: Number of updates required to learnthe lat
h task for three ar
hite
tures, as afun
tion of the sequen
e length (the numberof time steps over whi
h an input elementmust be remembered).optima on 35% and 85% of training runs, respe
tively, whereas the miofhmmyielded no lo
al optima. The miofhmm 
learly outperforms 
onventional hmmmodels on tasks involving long-term temporal dependen
ies. The key featurene
essary for the su

ess of the miofhmm is the 
onstraint that the state 
om-ponents behave as memory, whi
h is absent from the otherwise identi
al iofhmm.



In a se
ond study, we used another task that has previously been exploredin the neural net 
ommunity [6℄. The task involves dis
overing a 
lassi�
ationrule for input sequen
es that depends on the temporal order of events. Ea
hsequen
e begins with the start symbol S and terminates with the end symbol E.Embedded in ea
h sequen
e are two 
riti
al symbols 
hosen with repla
ementfrom fA;Bg. All other input symbols are random, 
hosen with repla
ement fromfC;D;F;Gg. The input alphabet thus 
onsists of eight symbols|two start sym-bols, two 
riti
al symbols, and four random symbols. A sample input sequen
e isS{C{A{G{B{F{E. The 
lassi�
ation of the sequen
e depends on the identityand order of the two 
riti
al symbols: sequen
es 
ontaining an A followed by aB are assigned to 
lass 1, a B followed by an A to 
lass 2, an A followed by anA to 
lass 3, and a B followed by a B to 
lass 4. On re
eiving the �nal input, thetask involved outputting the 
lass label; prior to this input, the task requiredoutputting a spe
ial \no 
lass" label.We 
ompared the iofhmm to the miofhmm. The models had two state 
om-ponents, ea
h having two memory states. We trained the models with 500 exam-ples, and used a validation set of 500 further examples to determine when themodel had learned the task. The iofhmm was never able to learn the task to a
riterion of 0 
lassi�
ation errors. Although the miofhmm ran into lo
al optimaon 65% of trials, it needed only 162 model-parameter updates on average to learnon the remaining 35%. (The lo
al optima obtained by the miofhmm in this andother experiments is a
tually a form of over�tting: the model performs very wellon the training set, but not on the validation set. But we 
all this a lo
al opti-mum nonetheless be
ause there is a solution for whi
h the model would performbetter on training and validation set.) Regardless, the miofhmm 
an su

eed ona diÆ
ult sequen
e-ordering task where the iofhmm fails, due to the 
onstraintimposed on the miofhmm that it implement a lat
h-and-hold memory.To summarize our two experiments, the lat
h-and-hold memory 
onstraintimposes a strong indu
tive bias on the miofhmm, whi
h allows it to learn moreeÆ
iently and reliably than models su
h as the iofhmm and iohmm whi
h do notexploit this 
onstraint. Of 
ourse, the bene�t extends only to tasks for whi
h thisbias is appropriate|tasks involving storing and remembering sequen
e elementsand their ordering.3.2 Comparison of MIOFHMMs and LSTMThe experiments in this se
tion explore the generalization 
apabilities of themiofhmm as 
ompared to those of lstm [6℄, the neural network model witha lat
h-and-hold memory 
onstraint. We 
onsider a generalization task that isparti
ularly diÆ
ult for ma
hine learning systems, and for whi
h no guaran-tees of good generalization are possible|where the distributions from whi
h thetraining and test examples are drawn di�er from one another.In these experiments, we study a variation of the lat
h task. The input at ea
htime 
onsists of two real-valued elements, a value and a marker, both in [0,1℄.The marker having value 1.0 indi
ates that the 
urrent value is to be stored, and



the marker having value 0.0 indi
ates that the previously stored value should beretrieved and outputted; a marker value of 0.5 indi
ates \no a
tion".Be
ause the miofhmm is intrinsi
ally dis
rete, input values were quantizedinto one of E equal width intervals in [0,1℄. For example, with E = 10, theintervals were [0,.1℄, [.1,.2℄, et
. Ea
h interval 
orresponded to a unique inputvalue, whi
h was 
rossed with the three distin
t markers for a total of 3E inputsymbols. The output 
onsisted of E symbols. The lstm, in 
ontrast, requiredonly two 
ontinuous inputs and one 
ontinuous output. Its output was judgedto be 
orre
t if it lay in the 
orre
t interval. Although the two ar
hite
tures arequite di�erent, it is not 
lear whether one has an advantage over the other onthis task. The miofhmm bene�ts from the fa
t that it re
eives inputs that arequantized in a task-appropriate manner, whereas the lstm bene�ts from thefa
t that its input has a 
ompositional stru
ture whi
h is task appropriate.In a �rst experiment, we trained the models on sequen
es with lengths be-tween 2 and 10, sampled uniformly, with E = 10 intervals, and with the valueto be stored always the �rst element of the sequen
e. Both models were suppliedwith 1000 training examples and 1000 validation examples. The models weretested on 1000 generalization examples for various lengths between 10 and 1000.Thus, the 
hallenge was to extrapolate to longer sequen
es, and hen
e, to forma memory that 
ould persist over long time intervals.For this experiment, lstm was provided with two memory 
ells. Weights inthe lstm were initialized randomly from [�:1; :1℄, with an initial bias of -1.0 onea
h input gate. A learning rate of 0.1 was used. Following ea
h sequen
e, theweights were updated and the network was reset. The miofhmm utilized onestate 
omponent with 10 memory states. For both models, training 
ontinueduntil all examples in the validation set were 
lassi�ed 
orre
tly (i.e., in the 
orre
tinterval); if this did not o

ur within a reasonable amount of time, then thetraining run was 
onsidered to have be
ome stu
k in a lo
al optimum.lstm learned the task eÆ
ientlyand reliably: training took was 36 se
-onds of CPU time on a 400 MHzPC (
orresponding to 130 trainingepo
hs), and never en
ountered lo
aloptima. In 
ontrast, the miofhmm re-quired 77 minutes of CPU time (15updates), and be
ame stu
k in lo
almaxima on 47% of runs. In testing,however, the miofhmm outshone thelstm. Figure 2 shows generalizationerror on test sequen
es with lengthsranging from 10 to 1000 elements. Thetest sequen
e length 
an be extended
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Fig. 2: Generalization error of the lstmand the miofhmm on a lat
h task with testsequen
es longer than the longest trainingsequen
e.to 1000 without any a�e
t on performan
e for the miofhmm, whereas the errorrate in
reases rapidly for the lstm for sequen
es having lengths greater than 30.



In a se
ond experiment, we simpli�ed the lat
h task by presenting sequen
eswhose element to be stored had only E = 2 dis
riminable values, but made thetask more diÆ
ult in that the value to be stored 
ould o

ur on any of the �rst5 sequen
e elements. Sequen
es ranged in length from 5 to 20. As in the �rstexperiment, a marker input of 1.0 was a signal to store an input, and a markerinput of 0.0 was a signal to retrieve the stored value. However, we modi�ed thetask by repla
ing the neutral marker value of 0.5 with values ranging from 0.025to 0.975. In the training set, the neutral marker value was randomly 
hosen froma uniform distribution over 39 dis
rete values evenly spa
ed in [0.025, 0.975℄.In the test set, the neutral marker value was randomly 
hosen from a re
ti�ed,dis
retized Gaussian distribution over the 39 dis
rete values. The varian
e of theGaussian was 
hosen based on a parameter a, su
h that with 99% probabilitythe a largest values will be 
hosen. Consequently, as a is de
reased, more markervalues in the sequen
e will be
ome 
onfused with the store (1.0) markers.As in the �rst experiment, lstmtraining was faster and more reliable:lstm required 7.75 minutes on av-erage to train (976 epo
hs), whereasthe miofhmm required 19 hours (50updates). lstm never en
ountered lo-
al optima, whereas miofhmm didon 15% of trials. However, in termsof generalization performan
e, mio-fhmm on
e again beat out lstm. Fig-ure 3 shows per
entage error on a testset as a fun
tion of the noise parame-ter a. Even for large values of a, mio- 0
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Fig. 3: Generalization error of the lstmand the miofhmm on a lat
h task with in-
reased noise.fhmm produ
es fewer errors than lstm, but as a is de
reased, lstm errorsin
rease dramati
ally. For small a, the neutral marker was more likely to be avalue 
lose to that of the store marker, and 
onsequently, a
ted as a lure to 
on-fuse lstm. miofhmm bene�ts from the fa
t that the marker 1.0 and the marker0.975 are two di�erent symbols, and the similarity stru
ture of the numeri
alvalues is therefore irrelevant to performan
e.To summarize these two experiments, the dis
rete nature of the miofhmm al-lows it to reliably hold information for longer periods of time than the 
ontinuouslstm, and also prevents the miofhmm from be
oming 
onfused by noise, evennoise whose statisti
s in the training and test sets are quite di�erent. Althoughthe two experimental tasks we presented are somewhat 
ontrived, they empha-size that the dis
rete nature of the miohmm 
an be a virtue that distinguishesfrom any 
ontinuous re
urrent neural network model.



4 Con
lusionsIn this paper, we have introdu
ed a novel ar
hite
ture for 
lassifying input se-quen
es and for mapping input sequen
es to output sequen
es, the miofhmm.The miofhmm 
ombines two of the virtues of hidden Markov models|the ex-pli
it probabilisti
 framework and the powerful Baum-Welsh training pro
edure|with a form of indu
tive bias found to be valuable in re
urrent neural networkmodels su
h as lstm. The bias for
es the miofhmm to behave as a lat
h-and-store memory. We explored four tasks that involved dis
overing key elementsin an input sequen
e whose dete
tion or temporal order was 
riti
al to perfor-man
e. The miofhmm performed well on all these tasks. In 
ontrast, variants ofthe ar
hite
ture without the memory 
onstraint|the iohmm and the iofhmm|s
aled poorly as a fun
tion of the temporal span of dependen
ies. Further, thedis
rete nature of the miofhmm makes it parti
ularly well suited to rea
hingstable, robust �xed points in state spa
e, and 
onsequently, it appears less sus-
eptible than a 
ontinuous model like lstm to disruption by noise, either in theform of interspersed irrelevant sequen
e elements or variability in the input at aparti
ular point in time. The one weakness of the miofhmm is that|in 
ontrastto our original intuitions|it takes signi�
antly longer than lstm to train and ismore sus
eptible to lo
al optima.A
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