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tThe goal of many unsupervised learning pro
edures is to bring twoprobability distributions into alignment. Generative models su
has Gaussian mixtures and Boltzmann ma
hines 
an be 
ast in thislight, as 
an re
oding models su
h as ICA and proje
tion pursuit.We propose a novel sample-based error measure for these 
lasses ofmodels, whi
h applies even in situations where maximum likelihood(ML) and probability density estimation-based formulations 
an-not be applied, e.g., models that are nonlinear or have intra
tableposteriors. Furthermore, our sample-based error measure avoidsthe diÆ
ulties of approximating a density fun
tion. We prove thatwith an un
onstrained model, (1) our approa
h 
onverges on the
orre
t solution as the number of samples goes to in�nity, and (2)the expe
ted solution of our approa
h in the generative frameworkis the ML solution. Finally, we evaluate our approa
h via simula-tions of linear and nonlinear models on mixture of Gaussians andICA problems. The experiments show the broad appli
ability andgenerality of our approa
h.1 Introdu
tionMany unsupervised learning pro
edures 
an be viewed as trying to bring two prob-ability distributions into alignment. Two well known 
lasses of unsupervised pro-
edures that 
an be 
ast in this manner are generative and re
oding models. In agenerative unsupervised framework, the environment generates training examples|whi
h we will refer to as observations|by sampling from one distribution; the otherdistribution is embodied in the model. Examples of generative frameworks are mix-tures of Gaussians (MoG) [2℄, fa
tor analysis [4℄, and Boltzmann ma
hines [8℄. Inthe re
oding unsupervised framework, the model transforms points from an obser-



vation spa
e to an output spa
e, and the output distribution is 
ompared either toa referen
e distribution or to a distribution derived from the output distribution.An example is independent 
omponent analysis (ICA) [11℄, a method that dis
oversa representation of ve
tor-valued observations in whi
h the statisti
al dependen
eamong the ve
tor elements in the output spa
e is minimized. With ICA, the modeldemixes observation ve
tors and the output distribution is 
ompared against a fa
-torial distribution whi
h is derived either from assumptions about the distribution(e.g., supergaussian) or from a fa
torization of the output distribution. Other ex-amples within the re
oding framework are proje
tion methods su
h as proje
tionpursuit (e.g., [14℄) and prin
ipal 
omponent analysis. In ea
h 
ase we have des
ribedfor the unsupervised learning of a model, the obje
tive is to bring two probabilitydistributions|one or both of whi
h is produ
ed by the model|into alignment. Toimprove the model, we need to de�ne a measure of the dis
repan
y between the twodistributions, and to know how the model parameters in
uen
e the dis
repan
y.One natural approa
h is to use outputs from the model to 
onstru
t a probabilitydensity estimator (PDE). The primary disadvantage of su
h an approa
h is that thea

ura
y of the learning pro
edure depends highly on the quality of the PDE. PDEsfa
e the bias-varian
e trade-o�. For the learning of generative models, maximumlikelihood (ML) is a popular approa
h that avoids PDEs. In an ML approa
h, themodel's generative distribution is expressed analyti
ally, whi
h makes it straightfor-ward to evaluate the posterior, p(data j model), and therefore, to adjust the modelparameters to maximize the likelihood of the data being generated by the model.This limits the ML approa
h to models that have tra
table posteriors, true only ofthe simplest models [1, 6, 9℄.We des
ribe an approa
h whi
h, like ML, avoids the 
onstru
tion of an expli
itPDE, yet does so without requiring an analyti
 expression for the posterior. Ourapproa
h, whi
h we 
all a sample-based method, assumes a set of samples from ea
hdistribution and proposes an error measure of the disagreement de�ned dire
tly interms of the samples. Thus, a se
ond set of samples drawn from the model serves inpla
e of a PDE or an analyti
 expression of the model's density. The sample-basedmethod is inspired by the theory of ele
tri
 �elds, whi
h des
ribes the intera
tionsamong 
harged parti
les. For more details on the metaphor, see [10℄.In this paper, we prove that our approa
h 
onverges to the optimal solution as thesample size goes to in�nity, assuming an un
onstrained (maximally 
exible) model.We also prove that the expe
ted solution of our approa
h is the ML solution ina generative 
ontext. We present empiri
al results showing that the sample-basedapproa
h works for both linear and nonlinear models.2 The MethodConsider a model to be learned, fw, parameterized by weights w. The model mapsan input ve
tor, zi, indexed by i, to an output ve
tor xi = fw(zi). The modelinputs are sampled from a distribution pz(:), and the learning pro
edure 
alls foradjusting the model su
h that the output distribution, px(:), 
omes to mat
h a targetdistribution, py(:). For unsupervised re
oding models, zi is an observation, xi isthe transformed representation of zi, and py(:) spe
i�es the desired 
ode properties.For unsupervised generative models, pz(:) is �xed and py(:) is the distribution ofobservations.



The Sample-based Method: The Intuitive StoryAssume that we have data points sampled from two di�erent distributions, la-beled \{" and \+" (Figure 1). The sample-based error measure spe
i�es how sam-ples should be moved so that the two distributions arebrought into alignment. In the �gure, samples from thelower left and upper right 
orners must be moved to theupper left and lower right 
orners. Our goal is to estab-lish an expli
it 
orresponden
e between ea
h \{" sampleand ea
h \+" sample. Toward this end, our sample-based method utilizes on mass intera
tions among thesamples, by introdu
ing a repelling for
e between sam- Figure 1ples from the same distribution and an attra
tive for
e between samples from dif-ferent distributions, and allowing the samples to move a

ording to these for
es.The Sample-based Method: The Formal PresentationIn 
on
eiving of the problem in terms of samples that attra
t and repel one another,it is natural to think in terms of physi
al intera
tions among 
harged parti
les.Consider a set of positively 
harged parti
les at lo
ations denoted by xi, i = 1:::Nx,and a set of negatively 
harged parti
les at lo
ations denoted by yj , j = 1:::Ny.The parti
les 
orrespond to data samples from two distributions. The intera
tionamong parti
les is 
hara
terized by the Coulomb energy, E:E = 12  1N2x NxXi=1 NxXk=1 � �xi; xk� � 2NyNx NxXi=1 NyXj=1 � �xi; yj� + 1N2y NyXk=1 NyXj=1 � �yk; yj�! ;where �(a; b) is a distan
e measure|Green's fun
tion|whi
h results in nearbyparti
les having a strong in
uen
e on the energy, but distant parti
les having onlya weak in
uen
e. Green's fun
tion is de�ned as �(a; b) = 
(d) = ka� bkd�2, whered is the dimensionality of the spa
e, 
(d) is a 
onstant only depending on d, and k:kdenotes the Eu
lidean distan
e. For d = 2, �(a; b) = k ln (ka� bk).The Coulomb energy is low when negative and positive parti
les are near one an-other, positive parti
les are far from one another, and negative parti
les are far fromone another. This is exa
tly the state we would like to a
hieve for our two distribu-tions of samples: bringing the two distributions into alignment without 
ollapsingeither distribution into a trivial form. Consequently, our sample-based methodproposes using the Coulomb energy as an obje
tive fun
tion to be minimized.The gradient of E with respe
t to a sample's lo
ation is readily 
om-puted (it is the for
e a
ting on that sample), and this gradient 
an be
hained with the Ja
obian of the lo
ation with respe
t to the model pa-rameters w to obtain a gradient-based update rule: �w = �� rwE =�� � 1Nx PNxk=1 ��xk�w �T rxk� �xk� � 1Ny PNyk=1 ��yk�w �T ryk� �yk��, where � is astep size, �(a) := N�1x PNxi=1 �(a; xi) � N�1y PNyj=1 �(a; yj) is the potential withN�1a ra�(a) = raE, T is the transposition and a = xk or yk. Here �xk=�w is theJa
obian of fw(zk) and the time derivative of xk is _xk = _fw(zk) = �r�(xk). If ykdepends on w then yk{notation is analogous else �yk=�w is the zero matrix.There turns out to be an advantage to using Green's fun
tion as the parti
le in-tera
tions basis over other possibilities, e.g., a Gaussian fun
tion (e.g., [12, 13, 3℄).



The advantage stems from the fa
t that with Green's fun
tion, the for
e betweentwo nearby points goes to in�nity as the points are pushed together, whereas withthe Gaussian, the for
e goes to zero. Consequently, without Green's fun
tion, onemight expe
t lo
al optima in whi
h 
lusters of points 
ollapse onto a single lo
ation.Empiri
ally, simulations 
on�rmed this 
onje
ture.Proof: Corre
tness of the Update RuleAs the numbers of samples Nx and Ny go to in�nity, � 
an be expressed as�(a) = R �(b) �(a; b) db, where �(b) := px(b) � py(b). Our sample-based methodmoves data points, but by moving data points, the method impli
itly alters theprobability density whi
h gave rise to the data. The relation between the move-ment of data points and the 
hange in the density 
an be expressed using an op-erator from ve
tor analysis, the divergen
e. The divergen
e at a lo
ation a is thenumber of data points moving out of a volume surrounding a minus the numberof data points moving in to the same volume. Thus, the negative divergen
e ofmovements at a gives the density 
hange at a. The movement of data points isgiven by �r�(a). We get _�(a) = _px(a) � _py(a) = �div (�r�(a)). For Carte-sian (orthogonal) 
oordinates the divergen
e div of a ve
tor �eld V at a is de�nedas div (V (a)) := Pdl=1 �Vl(a)=�al. The Lapla
e operator 4 of a s
alar fun
tion Ais de�ned as 4A(a) := div (rA(a)) = Pdl=1 �2A(a)=�a2l . The Lapla
e operatorallows an important 
hara
terization of Green's fun
tion: 4a�(a; b) = �Æ(a � b),where Æ is the Dira
 delta fun
tion. This 
hara
terization gives 4�(a) = ��(a)._�(a) = �(a) div (r�(a)) = �(a) 4�(a) = ��(a) �(a) ; �(a) � �0 > 0 ;where �(a) gives the e�e
tiveness of the algorithm in moving a sample at a. We get�(a; t) = �(a; 0) exp(��(a) t). For the integrated squared error (ISE) of the twodistributions we obtainISE(t) = Z (�(a; t))2 da � exp(��0 t) Z (�(a; 0))2 da = exp(��0 t) ISE(0) ;where ISE(0) is independent of t. Thus, the ISE between the two distributions isguaranteed to de
rease during learning, when the sample size goes to in�nity.Proof: Expe
ted Generative Solution is ML SolutionIn the 
ase of a generative model whi
h has no 
onstraints (i.e., 
an model anydistribution), the maximum likelihood solution will have distribution px(a) =1Ny PNyj=1 Æ(yj � a), i.e., the model will produ
e only the observations and all ofthem with equal probability. For this 
ase, we show that our sample-based methodwill yield the same solution in expe
tation as ML.The sample-based method 
onverges to a lo
al minimum of the energy, wherehra�(a)ix = 0 for all a, where h:ix is the expe
tation over model output. Equiva-lently, hra� (a; x)ix � 1Ny PNyj=1ra� �a; yj� = 0 orhra� (a; x)ix = Z px(x) ra� (a; x) dx = 1Ny NyXj=1ra� �a; yj� :Be
ause this equation holds for all a, we obtain px(a) = 1Ny PNyj=1 Æ(yj � a), whi
his the ML solution. Thus, the sample-based method 
an be viewed as an approxi-mation to ML whi
h gets more exa
t as the number of samples goes to in�nity.



3 ExperimentsWe illustrate the sample-based approa
h for two 
ommon unsupervised learningproblems: MoG and ICA. In both 
ases, we demonstrate that the sample-basedapproa
h works in the linear 
ase. We also 
onsider a nonlinear 
ase to illustratethe power of the sample-based approa
h.Mixture of GaussiansIn this generative model framework,m denotes a mixture 
omponent whi
h is 
hosenwith probability vm from M 
omponents, and has asso
iated model parameterswm = (
m; �m). In the standard MoG model, given a 
hoi
e of 
omponent m,the (linear) model output is obtained by xi = fwm(zi) = 
m zi + �m, where ziis drawn from the Gaussian distribution with zero mean and identity 
ovarian
ematrix. For a nonlinear mixture model, we used a 3-layer sigmoidal neural networkfor fwm(zi). An update rule for vm 
an be derived for our approa
h: �vm =��v PNxi=1 �zi�T �zi�xi _xi, where �v is a step size and PMm=1 vm = 1 is enfor
ed.We trained a linear MoG model with the standard expe
ted maximization (EM)algorithm (using 
ode from [5℄) and a linear and a nonlinear MoG with our sample-based approa
h. A �xed training set of Ny = 100 samples was used for all models,and all models had M = 10 ex
ept one nonlinear model whi
h had M = 1. In thesample-based approa
h, we generated 100 samples from our model (the xi) followingevery training epo
h. The nonlinear model was trained with ba
kpropagation.Figure 2 shows the results. The linear ML model is better than the sample-basedmodel. That is not surprising be
ause ML 
omputes the model probability valuesanalyti
ally (the posterior is tra
table) and our algorithm uses only samples toapproximate the model probability values. We used only 100 model samples inea
h epo
h and the linear sample-based model found an a

eptable solution andis not mu
h worse than the ML model. The nonlinear models �t better the truering-like distribution and do not su�er from sharp 
orners and edges.
linear (10)      nonlinear (10)     nonlinear (1)

trainings set original       ML (10 − linear) Figure 2: (upper panel, left to right)training samples 
hosen from a ringdensity, a larger sample from thisdensity, the solutions obtained fromthe linear model trained with EM;(lower panels) models trained withthe sample-based method (left toright): linear model, nonlinear model,nonlinear model with one 
omponent.Independent Component AnalysisWith a re
oding model we tried to demix subgaussian sour
e distributions whereea
h has supergaussian modes. Most ICA methods are not able to demix subgaus-sian sour
es. Figure 3 shows the results, whi
h are nearly perfe
t. The ideal resultis a s
aled and permuted identity matrix when the mixing and demixing matri
esare multiplied. For more details see [10℄.



Sources

Mixtures

Recovered Sources

Figure 3: For a three-dimensional linearmixture proje
tions of sour
es (�rst row),mixtures (se
ond row), and sour
es re
ov-ered by our approa
h (third row) on a two-dimensional plane are shown.The demixing matrix multiplied with the mix-ing matrix yields:-0.0017 0.0010 0.2523-0.0014 0.1850 -0.0101-0.1755 0.0003 0.0053In a se
ond experiment, we tried to re
over sour
es from two nonlinear mixings.This problem is impossible for standard ICA methods be
ause they are designedfor linear mixings. The result is shown in Figure 4. An exa
t demixing 
annot beexpe
ted, be
ause nonlinear ICA has no unique solution. For more details see [10℄.
 

   

  

Sources Mixtures Recovered Sources Figure 4: For two two-dimensionalnonlinear mixing fun
tions| upperrow, (z+ a)2, and lower row, pz + a,with 
omplex variable z|the sour
es,mixtures, and re
overed sour
es. Themixing fun
tion is not 
ompletely in-verted but the sour
es are re
overedre
ognizable.4 Dis
ussionAlthough our sample-based approa
h is intuitively straightforward, its implemen-tation has two drawba
ks: (1) One has to be 
autious of samples that are 
losetogether, be
ause they lead to unbounded gradients; and (2) all samples must be
onsidered when 
omputing the for
e on a data point, whi
h makes the approa
h
omputation intensive. However, in [10, 7℄ approximations are proposed that redu
ethe 
omputational 
omplexity of the approa
h.In this paper, we have presented simulations showing the generality and powerof our sample-based approa
h to unsupervised learning problems, and have alsoproven two important properties of the approa
h: (1) With 
ertain assumptions,the approa
h will �nd the 
orre
t solution. (2) With an un
onstrained model, theexpe
ted solution of our approa
h is the ML solution. In 
on
lusion, our sample-based approa
h 
an be applied to unsupervised learning of 
omplex models whereML does not work and our method avoids the drawba
ks of PDE approa
hes.
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