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Abstract

The goal of many unsupervised learning procedures is to bring two
probability distributions into alignment. Generative models such
as Gaussian mixtures and Boltzmann machines can be cast in this
light, as can recoding models such as ICA and projection pursuit.
We propose a novel sample-based error measure for these classes of
models, which applies even in situations where maximum likelihood
(ML) and probability density estimation-based formulations can-
not be applied, e.g., models that are nonlinear or have intractable
posteriors. Furthermore, our sample-based error measure avoids
the difficulties of approximating a density function. We prove that
with an unconstrained model, (1) our approach converges on the
correct solution as the number of samples goes to infinity, and (2)
the expected solution of our approach in the generative framework
is the ML solution. Finally, we evaluate our approach via simula-
tions of linear and nonlinear models on mixture of Gaussians and
ICA problems. The experiments show the broad applicability and
generality of our approach.

1 Introduction

Many unsupervised learning procedures can be viewed as trying to bring two prob-
ability distributions into alignment. Two well known classes of unsupervised pro-
cedures that can be cast in this manner are generative and recoding models. In a
generative unsupervised framework, the environment generates training examples—
which we will refer to as observations—by sampling from one distribution; the other
distribution is embodied in the model. Examples of generative frameworks are mix-
tures of Gaussians (MoG) [2], factor analysis [4], and Boltzmann machines [§]. In
the recoding unsupervised framework, the model transforms points from an obser-



vation space to an output space, and the output distribution is compared either to
a reference distribution or to a distribution derived from the output distribution.
An example is independent component analysis (IC'4) [11], a method that discovers
a representation of vector-valued observations in which the statistical dependence
among the vector elements in the output space is minimized. With ICA, the model
demizes observation vectors and the output distribution is compared against a fac-
torial distribution which is derived either from assumptions about the distribution
(e.g., supergaussian) or from a factorization of the output distribution. Other ex-
amples within the recoding framework are projection methods such as projection
pursuit (e.g., [14]) and principal component analysis. In each case we have described
for the unsupervised learning of a model, the objective is to bring two probability
distributions—one or both of which is produced by the model—into alignment. To
improve the model, we need to define a measure of the discrepancy between the two
distributions, and to know how the model parameters influence the discrepancy.

One natural approach is to use outputs from the model to construct a probability
density estimator (PDE). The primary disadvantage of such an approach is that the
accuracy of the learning procedure depends highly on the quality of the PDE. PDEs
face the bias-variance trade-off. For the learning of generative models, mazimum
likelihood (ML) is a popular approach that avoids PDEs. In an ML approach, the
model’s generative distribution is expressed analytically, which makes it straightfor-
ward to evaluate the posterior, p(data | model), and therefore, to adjust the model
parameters to maximize the likelihood of the data being generated by the model.
This limits the ML approach to models that have tractable posteriors, true only of
the simplest models [1, 6, 9].

We describe an approach which, like ML, avoids the construction of an explicit
PDE, yet does so without requiring an analytic expression for the posterior. Our
approach, which we call a sample-based method, assumes a set of samples from each
distribution and proposes an error measure of the disagreement defined directly in
terms of the samples. Thus, a second set of samples drawn from the model serves in
place of a PDE or an analytic expression of the model’s density. The sample-based
method is inspired by the theory of electric fields, which describes the interactions
among charged particles. For more details on the metaphor, see [10].

In this paper, we prove that our approach converges to the optimal solution as the
sample size goes to infinity, assuming an unconstrained (maximally flexible) model.
We also prove that the expected solution of our approach is the ML solution in
a generative context. We present empirical results showing that the sample-based
approach works for both linear and nonlinear models.

2 The Method

Consider a model to be learned, f,,, parameterized by weights w. The model maps
an input vector, z!, indexed by i, to an output vector z' = f,(z%). The model
inputs are sampled from a distribution p,(.), and the learning procedure calls for
adjusting the model such that the output distribution, p,(.), comes to match a target
distribution, p,(.). For unsupervised recoding models, z' is an observation, ! is
the transformed representation of 2%, and py(.) specifies the desired code properties.
For unsupervised generative models, p.(.) is fixed and p,(.) is the distribution of
observations.



The Sample-based Method: The Intuitive Story

Assume that we have data points sampled from two different distributions, la-

beled “-” and “+” (Figure 1). The sample-based error measure specifies how sam-
ples should be moved so that the two distributions are ~
brought into alignment. In the figure, samples from the Ei z

lower left and upper right corners must be moved to the
upper left and lower right corners. Our goal is to estab-
lish an explicit correspondence between each “-” sample
and each “4” sample. Toward this end, our sample-
based method utilizes on mass interactions among the
samples, by introducing a repelling force between sam- Figure 1

ples from the same distribution and an attractive force between samples from dif-
ferent distributions, and allowing the samples to move according to these forces.
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The Sample-based Method: The Formal Presentation

In conceiving of the problem in terms of samples that attract and repel one another,
it is natural to think in terms of physical interactions among charged particles.
Consider a set, of positively charged particles at locations denoted by x*, ¢ = 1...N,,
and a set of negatively charged particles at locations denoted by y’/, j = 1...N,,.
The particles correspond to data samples from two distributions. The interaction
among particles is characterized by the Coulomb energy, E:
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where I'(a,b) is a distance measure—Green’s function—which results in nearby
particles having a strong influence on the energy, but distant particles having only
a weak influence. Green’s function is defined as T'(a,b) = ¢(d) / ||a — b||*~2, where
d is the dimensionality of the space, ¢(d) is a constant only depending on d, and ||.|
denotes the Euclidean distance. For d = 2, I'(a,b) = k In (||la — b]|).

The Coulomb energy is low when negative and positive particles are near one an-
other, positive particles are far from one another, and negative particles are far from
one another. This is exactly the state we would like to achieve for our two distribu-
tions of samples: bringing the two distributions into alignment without collapsing
either distribution into a trivial form. Consequently, our sample-based method
proposes using the Coulomb energy as an objective function to be minimized.

The gradient of E with respect to a sample’s location is readily com-
puted (it is the force acting on that sample), and this gradient can be
chained with the Jacobian of the location with respect to the model pa-
rameters w to obtain a gradient-based update rule: Aw = —e V4 ,E =

T T
—€ <N%g ZkN:”I (%—ﬂe) V@ (a:k) — N%, Eg:yl (%) Vi ® (yk)>, where € is a
step size, ®(a) = N;' SN T(a,z?) — Nt E;V:yl ['(a,y?) is the potential with
N;!' Vo®(a) = VoE, T is the transposition and a = z* or y*. Here dz* /0w is the
Jacobian of f,,(z*) and the time derivative of z* is #* = f,,(2¥) = =V ®(z*). If y*

depends on w then y*-notation is analogous else Oy* /0w is the zero matrix.

There turns out to be an advantage to using Green’s function as the particle in-
teractions basis over other possibilities, e.g., a Gaussian function (e.g., [12, 13, 3]).



The advantage stems from the fact that with Green’s function, the force between
two nearby points goes to infinity as the points are pushed together, whereas with
the Gaussian, the force goes to zero. Consequently, without Green’s function, one
might expect local optima in which clusters of points collapse onto a single location.
Empirically, simulations confirmed this conjecture.

Proof: Correctness of the Update Rule

As the numbers of samples N, and N, go to infinity, ® can be expressed as
®(a) = [ p(b) T(a,b) db, where p(b) := p,(b) — py(b). Our sample-based method
moves data points, but by moving data points, the method implicitly alters the
probability density which gave rise to the data. The relation between the move-
ment of data points and the change in the density can be expressed using an op-
erator from vector analysis, the divergence. The divergence at a location a is the
number of data points moving out of a volume surrounding a minus the number
of data points moving in to the same volume. Thus, the negative divergence of
movements at a gives the density change at a. The movement of data points is
given by —V®(a). We get p(a) = pz(a) — py(a) = —div(=V®(a)). For Carte-
sian (orthogonal) coordinates the divergence div of a vector field V' at a is defined
as div (V(a)) := 27:1 0Vi(a)/da;. The Laplace operator A of a scalar function A

is defined as AA(a) := div(VA(a)) = Y., 8A(a)/da?. The Laplace operator

allows an important characterization of Green’s function: A,I'(a,b) = —d(a — b),
where § is the Dirac delta function. This characterization gives A®(a) = —p(a).
pla) = p(a) div (Ve(a)) = ula) A®(a) = —p(a) pla) ,  pla) > po >0,

where u(a) gives the effectiveness of the algorithm in moving a sample at a. We get
pla,t) = p(a,0) exp(—p(a) t). For the integrated squared error (ISE) of the two
distributions we obtain

ISE(t) = / (p(a,t))* da < exp(—po 1) / (pla,0))* da = exp(—po 1) ISE(0)

where ISE(0) is independent of ¢. Thus, the ISE between the two distributions is
guaranteed to decrease during learning, when the sample size goes to infinity.

Proof: Expected Generative Solution is ML Solution

In the case of a generative model which has no constraints (i.e., can model any
distribution), the maximum likelihood solution will have distribution p,(a) =
N% Z;V:"’l d(y’ — a), i.e., the model will produce only the observations and all of
them with equal probability. For this case, we show that our sample-based method
will yield the same solution in expectation as ML.

The sample-based method converges to a local minimum of the energy, where
(Va®(a)), = 0 for all a, where (.), is the expectation over model output. Equiva-

lently, (VT (a,2)), — 5 X5 Val (a,97) = 0or

1 &
(VT (a,2)), = /pm(a:) V.l (a,2) dz = E;V“F (a,57) .

Because this equation holds for all a, we obtain p,(a) = Niy Z;V:yl 5(y? — a), which

is the ML solution. Thus, the sample-based method can be viewed as an approxi-
mation to ML which gets more exact as the number of samples goes to infinity.



3 Experiments

We illustrate the sample-based approach for two common unsupervised learning
problems: MoG and ICA. In both cases, we demonstrate that the sample-based
approach works in the linear case. We also consider a nonlinear case to illustrate
the power of the sample-based approach.

Mixture of Gaussians

In this generative model framework, m denotes a mixture component which is chosen
with probability v, from M components, and has associated model parameters
Wi = (Qm,y ). In the standard MoG model, given a choice of component m,
the (linear) model output is obtained by ¢ = f, (2%) = Qm 2° + jim, where 2°
is drawn from the Gaussian distribution with zero mean and identity covariance
matrix. For a nonlinear mixture model, we used a 3-layer sigmoidal neural network
for fu, (). An update rule for v, can be derived for our approach: Av,, =

No (o\T 828 i ; i M i
—ey i (21) 2% if, where €, is a step size and 3, _, vm = 1 is enforced.

We trained a linear MoG model with the standard expected maximization (EM)
algorithm (using code from [5]) and a linear and a nonlinear MoG with our sample-
based approach. A fixed training set of N, = 100 samples was used for all models,
and all models had M = 10 except one nonlinear model which had M = 1. In the
sample-based approach, we generated 100 samples from our model (the z?) following
every training epoch. The nonlinear model was trained with backpropagation.

Figure 2 shows the results. The linear ML model is better than the sample-based
model. That is not surprising because ML computes the model probability values
analytically (the posterior is tractable) and our algorithm uses only samples to
approximate the model probability values. We used only 100 model samples in
each epoch and the linear sample-based model found an acceptable solution and
is not much worse than the ML model. The nonlinear models fit better the true
ring-like distribution and do not suffer from sharp corners and edges.

trainings set original ML (10 - linear) . .
: Figure 2: (upper panel, left to right)

training samples chosen from a ring
density, a larger sample from this
density, the solutions obtained from
the linear model trained with EM;
(lower panels) models trained with
the sample-based method (left to
right): linear model, nonlinear model,
nonlinear model with one component.

nonlinear (10)  nonlinear (1)

Independent Component Analysis

With a recoding model we tried to demix subgaussian source distributions where
each has supergaussian modes. Most ICA methods are not able to demix subgaus-
sian sources. Figure 3 shows the results, which are nearly perfect. The ideal result
is a scaled and permuted identity matrix when the mixing and demixing matrices
are multiplied. For more details see [10].



Sources

Figure 3: For a three-dimensional linear
mixture projections of sources (first row),
mixtures (second row), and sources recov-
ered by our approach (third row) on a two-
dimensional plane are shown.
The demixing matrix multiplied with the mix-
ing matrix yields:

-0.0017  0.0010 0.2523

-0.0014 0.1850 -0.0101

-0.1755 0.0003  0.0053

Mixtures

Recovered Sources

In a second experiment, we tried to recover sources from two nonlinear mixings.
This problem is impossible for standard ICA methods because they are designed
for linear mixings. The result is shown in Figure 4. An exact demixing cannot be
expected, because nonlinear ICA has no unique solution. For more details see [10].

Sources Mixtures Recovered Sources

Figure 4: For two two-dimensional
! ’ x ? nonlinear mixing functions— upper
et G I I row, (z + a)?, and lower row, v/z + a,

e

’ with complex variable z—the sources,

- prem— mixtures, and recovered sources. The

: o s Lol mixing function is not completely in-

1 ',; ! “‘fs\ i f verted but the sources are recovered
S R, T recognizable.

4 Discussion

Although our sample-based approach is intuitively straightforward, its implemen-
tation has two drawbacks: (1) One has to be cautious of samples that are close
together, because they lead to unbounded gradients; and (2) all samples must be
considered when computing the force on a data point, which makes the approach
computation intensive. However, in [10, 7] approximations are proposed that reduce
the computational complexity of the approach.

In this paper, we have presented simulations showing the generality and power
of our sample-based approach to unsupervised learning problems, and have also
proven two important properties of the approach: (1) With certain assumptions,
the approach will find the correct solution. (2) With an unconstrained model, the
expected solution of our approach is the ML solution. In conclusion, our sample-
based approach can be applied to unsupervised learning of complex models where
ML does not work and our method avoids the drawbacks of PDE approaches.
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