
Unsupervised coding with LococodeIn Proc. ICANN'97, p. 655-660Sepp Hochreiter and J�urgen SchmidhuberTechnische Universit�at M�unchen, 80290 M�unchen, Germanyand IDSIA, Corso Elvezia 36, CH-6900-Lugano, SwitzerlandAbstract. Traditional approaches to sensory coding use code compo-nent-oriented objective functions (COCOFs) to evaluate code quality.Previous COCOFs do not take into account the information-theoreticcomplexity of the code-generating mapping itself. We do: \Low-com-plexity coding and decoding" (Lococode) generates so-called lococodesthat (1) convey information about the input data, (2) can be computedfrom the data by a low-complexity mapping (LCM), and (3) can be de-coded by a LCM. We implement Lococode by training autoassociatorswith Flat Minimum Search (FMS), a general method for �nding low-complexity neural nets. Lococode extracts optimal codes for di�cultversions of the \bars" benchmark problem. As a preprocessor for a vowelrecognition benchmark problem it sets the stage for excellent classi�ca-tion performance.1 IntroductionSeveral COCOFs have been proposed to evaluate the quality of sensory codes.Many COCOFs explicitly favor factorial codes [1] of input data. Other ap-proaches favor local codes, e.g., [8]. Recently there also has been much work onCOCOFs for biologically plausible sparse distributed codes, which share someadvantages of both minimally redundant and local codes, e.g., [4,3,6].But what about coding costs? COCOFs emphasize desirable propertiesof the code itself, while neglecting the costs of constructing the code from thedata. For instance, coding input data in a redundancy-free fashion may be veryexpensive in terms of information bits required to describe many �nely tuned freeparameters in the code-generating network. In this paper we will shift the focusonto the information-theoretic costs of code-generation. See abstract. We willsee that Lococode encourages noise-tolerant \feature detectors" reminiscent ofthose observed in the mammalian visual cortex, because they are easily codableand decodable.2 Flat minimum search: reviewTo implement Lococode we apply Flat MinimumSearch (FMS) [7] to a 3-layerautoassociator (AA) whose hidden unit (HU) activations represent the code.

FMS is a general, gradient-based method for �nding low-complexity networksthat can be described with few bits of information.FMS Overview. FMS �nds a large region in weight space such that eachweight vector from that region has similar small error. Such regions are called\
at minima". A
at minimum corresponds to weights many of which can begiven with low precision. In contrast, a \sharp" minimumcorresponds to weightswhich have to be speci�ed with high precision. In the terminology of the theoryof minimum description length (MDL), fewer bits of information are required topick a \
at" minimum (corresponding to a low complexity-network). As a nat-ural by-product of net complexity reduction, FMS automatically prunes units,weights, and input lines, reduces output sensitivity with respect to remainingweights and units, and generalizes well. In a previous application to stock mar-ket prediction [7], FMS led to better results than \weight decay" and \optimalbrain surgeon".Architecture.We use a 3 layer feedforward net. Each layer is fully connectedto the next layer. Let O;H; I denote index sets for output, hidden, input units,respectively. For l 2 O [H, the activation yl of unit l is yl = f(sl), wheresl = Pmwlmym is the net input of unit l (m 2 H for l 2 O and m 2 I forl 2 H), wlm denotes the weight on the connection from unit m to unit l, fdenotes the activation function, and for m 2 I, ym denotes the m-th componentof an input vector. W = j(O�H) [(H � I)j is the number of weights.Algorithm. FMS' objective function E features an unconventional term:B = Xi;j2O�H[H�I logXk2O(@yk@wij)2+W logXk2O0@ Xi;j2O�H[H�I j @yk@wij jqPk2O(@yk@wij)21A2 :E = Eq + �B is minimized by gradient descent, where Eq is the training setmean squared error (MSE), and � > 0 scales B's in
uence. B measures theweight precision (number of bits needed to describe all weights in the net).Reducing B without increasing Eq means removing weight precision without in-creasing quadratic error. All of this can be done e�ciently, namely, with standardbackprop's order of computational complexity. For more details see [7].3 Experiment 1: independent barsThe task is adapted from [2]. The input is a 5 � 5 pixel grid with horizontaland vertical 1� 5 and 5� 1 bars at random, independent positions. The goal isto extract the independent features corresponding to the bars. According to [2],even a simpler variant (no mixing of vertical and horizontal bars) is not trivial:\Although it might seem like a toy problem, the 5� 5 bar task with only 10 HUsturns out to be quite hard for all the algorithms we discuss. The coding cost ofmaking an error in one bar goes up linearly with the size of the grid, so at leastone aspect of the problem gets easier with large grids." [2]. We will see that eventhe di�cult version of this task is not hard for Lococode.Training and testing. For each of the 25 pixels there is an input unit.Input units that see a pixel of a bar take on activation 0:5; others �0:5. Each of

the 10 possible bars appears with probability 15 . In contrast to [2] vertical andhorizontal bars may be mixed in the same input. This makes the task harder(see [2], p. 570). To test Lococode's ability to reduce redundancy, we use manymore HUs (namely 25) than the required minimum of 10. [2] (p. 570) reportsthat an AA trained without FMS (and more than 10 HUs) \consistently failed".We have con�rmed this result.Following [2], the net is trained on 500 randomly generated patterns (theremay be pattern repetitions). Learning is stopped after 5,000 epochs. Then the netis tested on 500 additional random patterns. We say that a pattern is processedcorrectly if the absolute error of all output units is below 0.3. The sigmoidHUs are active in [0,1], the sigmoid output units are active in [-1,1]. Noninputunits have an additional bias input. The target is -0.7 for -0.5 and 0.7 for 0.5.Normal weights are initialized in [�0:1; 0:1], bias weights with -1.0, � with 0.5.Parameters: learning rate: 1.0,Etol = 0:16,�� = 0:001.Architecture: (25-25-25).Results: factorial codes based on feature detectors. Training MSE is0.11; test MSE is 0.15 (averages over 10 trials). The net generalizes well: only oneof the 500 test patterns is not processed correctly. 15 of the 25 HUs are indeedautomatically pruned. Figures 1 and 2 depict typical weights to and from HUs.For each of the 25 HUs there is a 5 � 5 square depicting the 25 post-trainingweights on connections from 25 inputs. The corresponding bias weight sits ontop of the upper left corner. White (black) circles on gray (white) backgroundare positive (negative) weights. The circle radius is proportional to the weight'sabsolute value. All but 10 units are e�ectively pruned away. The surviving HUsbecome binary bar detectors. They exactly mirror the statistics of the patterngeneration process: Lococode �nds an optimal factorial code by producingoptimal feature detectors.Backprop fails. For comparison we run this task with conventional back-propagation with 25 (BP25), 15 (BP15) and 10 (BP10) HUs. BP25: test MSE0.20; BP15: test MSE 0.22; BP10: test MSE 0.27. Backprop does not prune anyunits; the resulting weight patterns are highly unstructured, and the underlyinginput statistics are not discovered.Noisy bars. Similar lococodes were obtained even when we randomly variedbar intensities and added Gaussian noise to the input.Conclusion. Unlike standard backprop, Lococode easily solves hard vari-ants of the standard \bars" problem. It discovers the underlying statistics andextracts the essential, statistically independent features, even in case of noisyinputs.4 Experiment 2: vowel recognitionNext we will show that lococodes can help to achieve superior generalizationperformance on a supervised learning benchmark problem.Task.We recognize vowels, using data [9] from Scott Fahlman's CMU bench-mark collection. There are 11 vowels and 15 speakers. Each speaker spoke eachvowel 6 times. Data from the �rst 8 speakers is used for training, other datafor testing. This means 528 frames for training and 462 frames for testing. Each

1 2 pruned 3 4 pruned 5 pruned

6 7 8 9 10

11

 pruned

12 pruned 13 pruned 14 pruned 15 pruned

16 17 18 pruned 19 pruned 20

21 pruned 22 pruned 23 pruned 24 pruned 25 prunedFig. 1. Independent bars: incomingweights to hidden units.
1 2 pruned 3 4 pruned 5 pruned

6 7 8 9 10 pruned

11 12 pruned 13 pruned 14 pruned 15 pruned

16 17 18 pruned 19 pruned 20

21 pruned 22 pruned 23 pruned 24 pruned 25 prunedFig. 2. Independent bars: weights fromhidden to output units.frame consists of 10 input components obtained by low pass �ltering at 4.7kHz,digitized to 12 bits with a 10 kHz sampling rate. A twelfth order linear predictiveanalysis was carried out on six 512 sample Hamming-windowed segments fromthe steady part of the vowel. The re
ection coe�cients were used to calculate10 log area parameters, providing the 10 dimensional input space.Coding. The training data is coded using FMS for autoassociation. Archi-tecture: (10-30-10). The sigmoid HUs are active in [0,1], the sigmoid outputunits are active in [-1,1]. Noninput units have an additional bias input. The in-put components are linearly scaled in [-1,1]. The AA is trained with 107 patternpresentations. Then its weights are frozen.Classi�cation.Fromnow on, the vowel codes across all nonconstant HUs areused as inputs for a conventional supervised backprop classi�er, which is trainedto recognize the vowels from the code. The classi�er's architecture is ((30�c)-11-11), where c is the number of nonvarying (pruned) HUs in the AA. The hiddenand output units are sigmoid and active in [-1,1], and receive an additional biasinput. The classi�er is trained with another 107 pattern presentations.Parameters. AA net: learning rate: 0.02, Etol = 0:015, �� = 0:2,
 = 2:0.Backprop net: learning rate: 0.002.Over�tting. We con�rm Robinson's results: the classi�er tends to over�twhen trained by simple backprop | during learning, the test error rate �rstdecreases and then increases again.Comparison. See Table 1. FMS generates 3 di�erent lococodes. Each isfed into 10 conventional, over�tting backprop classi�ers with di�erent weightinitializations: the table entry for \Lococode/Backprop" represents the meanof 30 trials. The results for neural nets and nearest neighbor are taken fromRobinson [9]. The other results (except for Lococode's) are taken from Hastie

Technique error ratesnr. hidden units training test(1.1) Single-layer perceptron { { 0.67(1.2.1) Multi-layer perceptron 88 { 0.49(1.2.2) Multi-layer perceptron 22 { 0.55(1.2.3) Multi-layer perceptron 11 { 0.56(1.3.1) Modi�ed Kanerva Model 528 { 0.50(1.3.2) Modi�ed Kanerva Model 88 { 0.57(1.4.1) Radial Basis Function 528 { 0.47(1.4.2) Radial Basis Function 88 { 0.52(1.5.1) Gaussian node network 528 { 0.45(1.5.2) Gaussian node network 88 { 0.47(1.5.3) Gaussian node network 22 { 0.46(1.5.4) Gaussian node network 11 { 0.53(1.6.1) Square node network 88 { 0.45(1.6.2) Square node network 22 { 0.49(1.6.3) Square node network 11 { 0.50(2) Nearest neighbor { { 0.44(3) LDA { 0.32 0.56(4) Softmax { 0.48 0.67(5) QDA { 0.01 0.53(6.1) CART { 0.05 0.56(6.2) CART (linear comb. splits) { 0.05 0.54(7) FDA / BRUTO { 0.06 0.44(8) Softmax / BRUTO { 0.11 0.50(9.1) FDA / MARS (degree 1) { 0.09 0.45(9.2) FDA / MARS (degree 2) { 0.02 0.42(10.1) Softmax / MARS (degree 1) { 0.14 0.48(10.2) Softmax / MARS (degree 2) { 0.10 0.50(11) Lococode / Backprop 30/11 0.05 0.42Table 1. Vowel recognition task: generalization performance of di�erent methods. Sur-prisingly, FMS-generated lococodes fed into a conventional, over�tting backprop classi-�er led to best results. See text for details.et al. [5]. Our method led to best generalization results. The error rates afterbackprop learning vary between 39 and 45 %.Backprop fed with Lococode code sometimes goes down to 38 % error rate,but due to over�tting error grows again. Given that backprop by itself is a verynaive approach, the fact that its generalization performance can be dramaticallyenhanced by feeding it nongoal-speci�c lococodes appears quite surprising.Hastie et al. also obtained additional, even slightly better results with anFDA/MARS variant: down to 39 % average error rate. It should be mentioned,however, that their data was subject to goal-directed pre-processing with splines,such that there were many clearly de�ned classes. Furthermore, to determine theinput dimension, Hastie et al. used a special kind of generalized cross-validationerror, where one constant was obtained by unspeci�ed \simulation studies".Typical feature detectors. The number of (pruned) HUs with constantactivation varies between 5 and 10. 2 to 5 HUs become binary, and 4 to 7 trinary.

With all codes we observed: apparently, certain HUs become feature detectors forspeaker identi�cation. Another HU's activation is near 1.0 for the words \heed"and \hid" (\i" sounds). Another HU's activation has high values for the words\hod", \hoard", \hood" and \who'd" (\o"-words) and low but nonzero valuesfor \hard" and \heard". Lococode supports feature detection.5 ConclusionUnlike previous approaches, Lococode does not de�ne code optimality solelyby properties of the code itself. Instead, Lococode's notion of code optimalitytakes into account the information-theoretic complexity of the mappings used forcoding and decoding. Lococodes typically compromise between con
icting goals.They tend to exhibit low but not minimal redundancy | if the complexity costsof generating minimal redundancy are too high.Lococode easily solves coding tasks that have been described as hard byother authors. Our experiments also demonstrate the usefulness of Lococode-based data pre-processing for subsequent classi�cation. Although we made noattempt to prevent classi�er over�tting, we achieved excellent results. From thiswe conclude that the lococodes fed into the classi�er already conveyed the \es-sential", almost noise-free information necessary for excellent classi�cation. Weare led to believe that Lococode is a promising and general method for datapre-processing.6 AcknowledgmentsThis work was supported by DFG grant SCHM 942/3-1 from \Deutsche Forsch-ungsgemeinschaft". Results for the bars problem stem from M. Baumgartner'sdiploma thesis (TUM 1996).References1. H. B. Barlow, T. P. Kaushal, and G. J. Mitchison. Finding minimum entropy codes.Neural Computation, 1(3):412{423, 1989.2. P. Dayan and R. Zemel. Competition and multiple cause models. Neural Compu-tation, 7:565{579, 1995.3. B. A. Olshausen; D. J. Field. Emergence of simple-cell receptive �eld properties bylearning a sparse code for natural images. Nature, 381(6583):607{609, 1996.4. D. J. Field. What is the goal of sensory coding? Neural Computation, 6:559{601,1994.5. T. J. Hastie, R. J. Tibshirani, and A. Buja. Flexible discriminant analysis by optimalscoring. Technical report, AT&T Bell Laboratories, 1993.6. G. E. Hinton and Z. Ghahramani. Generative models for discovering sparse dis-tributed representations. Technical report, University of Toronto, Department ofComputer Science, Toronto, Ontario, M5S 1A4, Canada, 1997. A modi�ed versionto appear in Philosophical Transactions of the Royal Society B.7. S. Hochreiter and J. Schmidhuber. Flat minima. Neural Computation, 9(1):1{42,1997.8. T. Kohonen. Self-Organization and AssociativeMemory. Springer, second ed., 1988.9. A. J. Robinson. Dynamic Error Propagation Networks. PhD thesis, Trinity Halland Cambridge University Engineering Department, 1989.

