Unsupervised coding with Lococode

In Proc. ICANN’97, p. 655-660

Sepp Hochreiter and Jurgen Schmidhuber

Technische Universitat Minchen, 80290 Minchen, Germany
and IDSTA, Corso Elvezia 36, CH-6900-Lugano, Switzerland

Abstract. Traditional approaches to sensory coding use code compo-
nent-oriented objective functions (COCOFSs) to evaluate code quality.
Previous COCOFs do not take into account the information-theoretic
complexity of the code-generating mapping itself. We do: “Low-com-
plexity coding and decoding” (LOCOCODE) generates so-called lococodes
that (1) convey information about the input data, (2) can be computed
from the data by a low-complexity mapping (LCM), and (3) can be de-
coded by a LCM. We implement LOCOCODE by training autoassociators
with Flat Minimum Search (FMS), a general method for finding low-
complexity neural nets. LOCOCODE extracts optimal codes for difficult
versions of the “bars” benchmark problem. As a preprocessor for a vowel
recognition benchmark problem it sets the stage for excellent classifica-
tion performance.

1 Introduction

Several COCOFs have been proposed to evaluate the quality of sensory codes.
Many COCOFs explicitly favor factorial codes [1] of input data. Other ap-
proaches favor local codes, e.g., [8]. Recently there also has been much work on
COCOFs for biologically plausible sparse distributed codes, which share some
advantages of both minimally redundant and local codes, e.g., [4,3,6].

But what about coding costs? COCOFs emphasize desirable properties
of the code itself, while neglecting the costs of constructing the code from the
data. For instance, coding input data in a redundancy-free fashion may be very
expensive in terms of information bits required to describe many finely tuned free
parameters in the code-generating network. In this paper we will shift the focus
onto the information-theoretic costs of code-generation. See abstract. We will
see that LOCOCODE encourages noise-tolerant “feature detectors” reminiscent of
those observed in the mammalian visual cortex, because they are easily codable

and decodable.

2 Flat minimum search: review

To implement LococoDE we apply Flat Minimum Search (FMS) [7] to a 3-layer
autoassociator (AA) whose hidden unit (HU) activations represent the code.

FMS is a general, gradient-based method for finding low-complexity networks
that can be described with few bits of information.

FMS Overview. FMS finds a large region in weight space such that each
weight vector from that region has similar small error. Such regions are called
“flat minima”. A flat minimum corresponds to weights many of which can be
given with low precision. In contrast, a “sharp” minimum corresponds to weights
which have to be specified with high precision. In the terminology of the theory
of minimum description length (MDL), fewer bits of information are required to
pick a “flat” minimum (corresponding to a low complexity-network). As a nat-
ural by-product of net complexity reduction, FMS automatically prunes units,
weights, and input lines, reduces output sensitivity with respect to remaining
weights and units, and generalizes well. In a previous application to stock mar-
ket prediction [7], FMS led to better results than “weight decay” and “optimal
brain surgeon”.

Architecture. We use a 3 layer feedforward net. Each layer is fully connected
to the next layer. Let O, H, I denote index sets for output, hidden, input units,
respectively. For [€ O U H, the activation y' of unit [is y* = f(s;), where
s = >, Wimy" is the net input of unit { (m € H for | € O and m € I for
l € H), wy, denotes the weight on the connection from unit m to unit [, f
denotes the activation function, and for m € I, ¥ denotes the m-th component
of an input vector. W = |(O x H) U (H x I)] is the number of weights.

Algorithm. FMS’ objective function E features an unconventional term:

|
dw;y

k
B= Y log Z(%U)Z—I-Wlog 3

ak
i jEOXHUHXI keO ke0 \ijeOXHUHxXI Zkeo(ﬁ”)z

F = E; 4+ AB is minimized by gradient descent, where F, is the training set
mean squared error (MSE), and A > 0 scales B’s influence. B measures the
weight precision (number of bits needed to describe all weights in the net).
Reducing B without increasing £, means removing weight precision without in-
creasing quadratic error. All of this can be done efficiently, namely, with standard
backprop’s order of computational complexity. For more details see [7].

3 Experiment 1: independent bars

The task is adapted from [2]. The input is a 5 x 5 pixel grid with horizontal
and vertical 1 x b and b x 1 bars at random, independent positions. The goal is
to extract the independent features corresponding to the bars. According to [2],
even a simpler variant (no mixing of vertical and horizontal bars) is not trivial:
“Although it might seem like a toy problem, the b x b bar task with only 10 HUs
turns out to be quite hard for all the algorithms we discuss. The coding cost of
making an error in one bar goes up linearly with the size of the grid, so at least
one aspect of the problem gels easier with large grids.” [2]. We will see that even
the difficult version of this task i1s not hard for Lococont.

Training and testing. For each of the 25 pixels there is an input unit.
Input units that see a pixel of a bar take on activation 0.5; others —0.5. Each of

the 10 possible bars appears with probability % In contrast to [2] vertical and
horizontal bars may be mixed in the same input. This makes the task harder
(see [2], p. 570). To test LococoDE’s ability to reduce redundancy, we use many
more HUs (namely 25) than the required minimum of 10. [2] (p. 570) reports
that an AA trained without FMS (and more than 10 HUs) “consistently failed”.
We have confirmed this result.

Following [2], the net is trained on 500 randomly generated patterns (there
may be pattern repetitions). Learning is stopped after 5,000 epochs. Then the net
is tested on 500 additional random patterns. We say that a pattern is processed
correctly if the absolute error of all output units is below 0.3. The sigmoid
HUs are active in [0,1], the sigmoid output units are active in [-1,1]. Noninput
units have an additional bias input. The target is -0.7 for -0.5 and 0.7 for 0.5.
Normal weights are initialized in [—0.1,0.1], bias weights with -1.0, A with 0.5.
Parameters: learning rate: 1.0, Eyo = 0.16, AX = 0.001. Architecture: (25-25-25).

Results: factorial codes based on feature detectors. Training MSE is
0.11; test MSE is 0.15 (averages over 10 trials). The net generalizes well: only one
of the 500 test patterns is not processed correctly. 15 of the 25 HUs are indeed
automatically pruned. Figures 1 and 2 depict typical weights to and from HUs.
For each of the 25 HUs there is a 5 x 5 square depicting the 25 post-training
weights on connections from 25 inputs. The corresponding bias weight sits on
top of the upper left corner. White (black) circles on gray (white) background
are positive (negative) weights. The circle radius is proportional to the weight’s
absolute value. All but 10 units are effectively pruned away. The surviving HUs
become binary bar detectors. They exactly mirror the statistics of the pattern
generation process: LOCOCODE finds an optimal factorial code by producing
optimal feature detectors.

Backprop fails. For comparison we run this task with conventional back-
propagation with 25 (BP25), 15 (BP15) and 10 (BP10) HUs. BP25: test MSE
0.20; BP15: test MSE 0.22; BP10: test MSE 0.27. Backprop does not prune any
units; the resulting weight patterns are highly unstructured, and the underlying
input statistics are not discovered.

Noisy bars. Similar lococodes were obtained even when we randomly varied
bar intensities and added Gaussian noise to the input.

Conclusion. Unlike standard backprop, LocoCODE easily solves hard vari-
ants of the standard “bars” problem. It discovers the underlying statistics and
extracts the essential, statistically independent features, even in case of noisy
inputs.

4 Experiment 2: vowel recognition

Next we will show that lococodes can help to achieve superior generalization
performance on a supervised learning benchmark problem.

Task. We recognize vowels, using data [9] from Scott Fahlman’s CMU bench-
mark collection. There are 11 vowels and 15 speakers. Each speaker spoke each
vowel 6 times. Data from the first 8 speakers is used for training, other data
for testing. This means 528 frames for training and 462 frames for testing. Each

[H @ 2pruned /@ 3 @ 4pruned i@ 5pruned 1 2pruned 3 4 pruned 5pruned
o1~ dnenn SRR a-T- o[O[= 0[O 1171 O[]~ Te[=0)=
ol gen BB onk ::ﬁ.f O [+~ pnnen
O« <0~ AB -1 «[ole|[-]0 O [+ [~ o[-[of Jo
ol Aen e e [“Tol«eo o Jole]o B0EeD
o BeD T 5 onE Flolelslel [O Te[-] [s[e[-I0[*
a 6 . [@9 @ 10 pruned, 6 7 8 9 10 pruned
OOOOO o]- o -[-]-]0] e OO OO B 1T AT O «[Of -
el el -0 aRe)| <ol
SOOI -~ 10 T oo FLE- 10 ~Tol-
T 0 T 5[Jolo
[e]e][el[e)[e] 1110 - TR OO 0 Ol 1~
|u /@ 12pruned @ 13pruned g 14 pruned @ 15pruned 11 12pruned 13pruned 14pruned 15pruned
T «[OT-Te] [CIOQO[L ofole]- - +Jof-
eeeee - BEE oI ocoood (el el [Flelel- 10 oD Tol~
- AE b Jolele| [s]-[-/@0O AE0D +[o[-
A I Jolo[e ®/+|0/@0 Jele]e o[- [-[0[
Ol [e] [s[c[-l00 [FII-I-[-] ool

@ 16 [1@ 18pruned @l 19 pruned i@ 20 16 17 18pruned 19pruned 20
110 e 10 - T 0O e[®[0]®] T=]-Jo NORE
-1 O]« ° -10[- AOEeE aRen| o= [o0) O -
0 1 [o- ponenonenoonnoe nent
Qlo[old9] [-]--1O- 5 10 T (= [s]®0 o+ [*[=]0 ol
110 o 10 T 0 ol o |eeel-[o] O-1-
21 pruned @ 22pruned (@ 23pruned (@ 24 pruned @ 25 pruned 21pruned 22pruned 23pruned 24pruned 25pruned
- T [e[Je] OO SOl]=] [O[s[e[*]*] [ofo

-[- - oo+ o °[O[=[0[0] [O-[o[e[e| [O[-][e[+] [o]e]e]"

Oo0| [ele[*[=]o] [O[[o[ele] [O[* e

<ol o]+ e[ole[-[0] [Olclol+[*] [O[o[e]+ [0
opoenfll o oofjsasoofjecooofjesees)

Fig.1. Independent bars: incoming Fig.2. Independent bars: weights from
weights to hidden units. hidden to output units.

frame consists of 10 input components obtained by low pass filtering at 4.7kHz,
digitized to 12 bits with a 10 kHz sampling rate. A twelfth order linear predictive
analysis was carried out on six 512 sample Hamming-windowed segments from
the steady part of the vowel. The reflection coefficients were used to calculate
10 log area parameters, providing the 10 dimensional input space.

Coding. The training data is coded using FMS for autoassociation. Archi-
tecture: (10-30-10). The sigmoid HUs are active in [0,1], the sigmoid output
units are active in [-1,1]. Noninput units have an additional bias input. The in-
put components are linearly scaled in [-1,1]. The AA is trained with 107 pattern
presentations. Then its weights are frozen.

Classification. From now on, the vowel codes across all nonconstant HUs are
used as inputs for a conventional supervised backprop classifier, which is trained
to recognize the vowels from the code. The classifier’s architecture is ((30—¢)-11-
11), where ¢ is the number of nonvarying (pruned) HUs in the AA. The hidden
and output units are sigmoid and active in [-1,1], and receive an additional bias
input. The classifier is trained with another 107 pattern presentations.

Parameters. AA net: learning rate: 0.02, F;,; = 0.015, AXA = 0.2, v = 2.0.
Backprop net: learning rate: 0.002.

Overfitting. We confirm Robinson’s results: the classifier tends to overfit
when trained by simple backprop — during learning, the test error rate first
decreases and then increases again.

Comparison. See Table 1. FMS generates 3 different lococodes. Each is
fed into 10 conventional, overfitting backprop classifiers with different weight
initializations: the table entry for “Lococopt/Backprop” represents the mean
of 30 trials. The results for neural nets and nearest neighbor are taken from
Robinson [9]. The other results (except for LocOCODE’s) are taken from Hastie

Technique error rates

nr. hidden units|training| test
(1.1) Single-layer perceptron - - 0.67
(1.2.1)| Multi-layer perceptron 88 - 0.49
(1.2.2)| Multi-layer perceptron 22 - 0.55
(1.2.3)| Multi-layer perceptron 11 - 0.56
(1.3.1)| Modified Kanerva Model 528 - 0.50
(1.3.2)| Modified Kanerva Model 88 - 0.57
(1.4.1) Radial Basis Function 528 - 0.47
(1.4.2) Radial Basis Function 88 - 0.52
(1.5.1)| Gaussian node network 528 - 0.45
(1.5.2)| Gaussian node network 88 - 0.47
(1.5.3)| Gaussian node network 22 - 0.46
(1.5.4)| Gaussian node network 11 - 0.53
(1.6.1) Square node network 88 - 0.45
(1.6.2) Square node network 22 - 0.49
(1.6.3) Square node network 11 - 0.50
(2) Nearest neighbor - -]0.44
(3) LDA - 0.32 [0.56
(4) Softmax - 0.48 [0.67
(5) QDA - 0.01 [0.53
(6.1) CART - 0.05 |0.56
(6.2) | CART (linear comb. splits) - 0.05 |0.54
(7) FDA / BRUTO - 0.06 |0.44
(8) Softmax / BRUTO - 0.11]0.50
(9.1) FDA / MARS (degree 1) - 0.09]0.45
(9.2) FDA / MARS (degree 2) - 0.02]0.42
(10.1) [Softmax / MARS (degree 1) - 0.14]0.48
(10.2) [Softmax / MARS (degree 2) - 0.10]0.50
(11) LococoDE / Backprop 30/11 0.05 |0.42

Table 1. Vowel recognition task: generalization performance of different methods. Sur-
prisingly, FMS-generated lococodes fed into a conventional, overfitting backprop class:-
fier led to best results. See text for details.

et al. [5]. Our method led to best generalization results. The error rates after
backprop learning vary between 39 and 45 %.

Backprop fed with LococODE code sometimes goes down to 38 % error rate,
but due to overfitting error grows again. Given that backprop by itself is a very
naive approach, the fact that its generalization performance can be dramatically
enhanced by feeding it nongoal-specific lococodes appears quite surprising.

Hastie et al. also obtained additional, even slightly better results with an
FDA/MARS variant: down to 39 % average error rate. It should be mentioned,
however, that their data was subject to goal-directed pre-processing with splines,
such that there were many clearly defined classes. Furthermore, to determine the
input dimension, Hastie et al. used a special kind of generalized cross-validation
error, where one constant was obtained by unspecified “simulation studies”.

Typical feature detectors. The number of (pruned) HUs with constant
activation varies between 5 and 10. 2 to 5 HUs become binary, and 4 to 7 trinary.

With all codes we observed: apparently, certain HUs become feature detectors for
speaker 1dentification. Another HU’s activation is near 1.0 for the words “heed”
and “hid” (“©” sounds). Another HU’s activation has high values for the words
“hod”, “hoard”, “hood” and “who’d” (“0”-words) and low but nonzero values
for “hard” and “heard”. LoCcOCODE supports feature detection.

5 Conclusion

Unlike previous approaches, LoOCOCODE does not define code optimality solely
by properties of the code itself. Instead, LOCOCODE’s notion of code optimality
takes into account the information-theoretic complexity of the mappings used for
coding and decoding. Lococodes typically compromise between conflicting goals.
They tend to exhibit low but not minimal redundancy — if the complexity costs
of generating minimal redundancy are too high.

LococoDE easily solves coding tasks that have been described as hard by
other authors. Our experiments also demonstrate the usefulness of LoCoCODE-
based data pre-processing for subsequent classification. Although we made no
attempt to prevent classifier overfitting, we achieved excellent results. From this
we conclude that the lococodes fed into the classifier already conveyed the “es-
sential”, almost noise-free information necessary for excellent classification. We
are led to believe that LOCOCODE is a promising and general method for data
pre-processing.

6 Acknowledgments

This work was supported by DFG grant SCHM 942/3-1 from “Deutsche Forsch-
ungsgemeinschaft”. Results for the bars problem stem from M. Baumgartner’s

diploma thesis (TUM 1996).

References

1. H. B. Barlow, T. P. Kaushal, and G. J. Mitchison. Finding minimum entropy codes.
Neural Computation, 1(3):412-423, 1989.

2. P. Dayan and R. Zemel. Competition and multiple cause models. Neural Compu-
tation, 7:565-579, 1995.

3. B. A. Olshausen; D. J. Field. Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature, 381(6583):607-609, 1996.

4. D. J. Field. What is the goal of sensory coding? Neural Computation, 6:559-601,
1994.

5. T. J. Hastie, R. J. Tibshirani, and A. Buja. Flexible discriminant analysis by optimal
scoring. Technical report, AT&T Bell Laboratories, 1993.

6. G. E. Hinton and Z. Ghahramani. Generative models for discovering sparse dis-
tributed representations. Technical report, University of Toronto, Department of
Computer Science, Toronto, Ontario, M5S 1A4, Canada, 1997. A modified version
to appear in Philosophical Transactions of the Royal Society B.

7. S. Hochreiter and J. Schmidhuber. Flat minima. Neural Computation, 9(1):1-42,
1997.

8. T. Kohonen. Self-Organization and Associative Memory. Springer, second ed., 1988.

9. A. J. Robinson. Dynamic Error Propagation Networks. PhD thesis, Trinity Hall
and Cambridge University Engineering Department, 1989.

