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S1 Introduction

This document contains supplementary information for the paper “FABIA: Factor Analysis for
Bicluster Acquisition”. Its purpose is to provide

1. further explanations to the method,

2. mathematical details and derivations,

3. data preprocessing recommendations,

4. more detailed description of the evaluation procedure,

5. details on the settings used for the different biclustering methods in the comparative analy-
sis, and

6. additional experimental results especially on the data set of Li et al. (2009) and for bench-
mark data created according to an additive model,

7. an extensive biological interpretation of biclustering results obtained by FABIA on the three
gene expression data sets.

The document is structured analogous to the main paper. Some (sub)sections have been split in
order to further structure the supplementary material.

S2 The FABIA Model

Depiction of a Factor Analysis Model

Figure S1 shows a simple factor analysis model with two factors.

noise ε

z2

x1 x2 x3 x4

z1

λ42

λ22

ε2 ε3 ε4ε1

factor z

observations x

loading matrix Λ

Figure S1: Factor analysis model with two factors and four observations.

The Product of Laplacians is Very Sparse

In our model, we have the products λi zi, where both λi and zi are Laplacian. Here we describe
the distribution resulting from the product of two Laplacian variables.
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The product of variables according to independent Laplace distributions is distributed propor-
tionally to

1
α1 α2

K0

(
2
√

x

α1 α2

)
,

where K0 is 0-th order modified Bessel function of the second kind and α1 and α2 are the scale
parameters of the Laplacians (Bithas et al., 2007). For x > 1 we have K0(x) ≈

√
π

2 x e
−x,

which gives

1
α1 α2

√
π
√
α1 α2

4
√
x

exp
(
− 2

√
x

α1 α2

)
for the distribution of the product of the variables. For large x, this distribution is governed by
exp (− a

√
x), therefore, the tails are heavier than that of the Laplace distribution.

However, the noise term in our model is Gaussian, which reduces the sparseness of the data
generated by the model. The sparseness of the model is between Gaussian (only noise) and the
0-th order modified Bessel function (no noise), depending on the signal-to-noise ratio.

In summary, our model produces data which are of about the same sparseness as Laplacian
distributed data.

S3 Model Selection

S3.1 Variational Approach for Sparse Factors

We obtain the following lower bound on the likelihood:

log p(x) ≥ log p(x|ξ) =
∫
Q(z̃) log p(x|ξ) dz̃

=
∫
Q(z̃) log

Q(z̃)
p(z̃ | x, ξ)

dz̃ −
∫
Q(z̃) log

Q(z̃)
p(z̃,x | ξ)

dz̃

≥
∫
Q(z̃) log p(z̃,x | ξ) dz̃

We used

p(x | ξ) =
p(z̃,x | ξ)
p(z̃ | x, ξ)

.

Like for the standard EM algorithm, we now set, for each sample xj ,

Q(z̃j) = p
(
z̃j | xj ,Λold,Ψold

)
.

For evaluating

p(z̃j ,xj | ξj) = p(xj | z̃j) p(z̃j | ξj) ,
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we need the prior p(z̃j). According to Girolami (2001) and Palmer et al. (2006),

p(z̃j) =
(

1√
2

)p p∏
i=1

exp(−
√

2 |zij |) = arg max
ξj

p(z̃j | ξj)

= arg max
ξj

(
1√
2

)p p∏
i=1

φ(ξij) N (z̃ij , |ξij |) ,

where

φ(ξij) = exp
(
− 1

2 |ξij |
) √

2 π |ξij | .

Maximizing the lower bound on the likelihood with respect to ξj (for the j-th sample xj) gives

ξij =

√∫
p(zj | xj) z2

ij dz̃j .

For computing ξ2ij , we can use

p(z̃j | xj ,Λ,Ψ) ≥ p(z̃j | xj ,Λ,Ψ, ξold) =
p(xj | z̃j ,Λ,Ψ) p(z̃j | ξold

j )∫
p(xj | z̃j ,Λ,Ψ) p(z̃j | ξold

j ) dz̃j
,

where we know both the variational p(z̃j | ξold
j ) and the Gaussian

p(xj | z̃j ,Λ,Ψ) = N (Λ z̃j , Ψ) .

Using Ξj = diag(ξj), the variational prior is the following multi-modal Gaussian:(
1√
2

)p
φ(Ξj) N (z̃j , Ξj)

The posterior of z̃j is now basically a product of Gaussians for which we can compute the condi-
tional expectations analytically.

The conditional mean is

E(zj | xj) =
((

Λold
)T (Ψold

)−1 Λold +
(
Ξold
j

)−1
)−1(

Λold
)T (Ψold

)−1
xj

and the conditional covariance is

E
(
z̃j z̃

T
j | xj

)
=
((

Λold
)T (Ψold

)−1 Λold +
(
Ξold
j

)−1
)−1

+ E(z̃j | xj) E(z̃j | xj)T .

The update for ξj is now

ξj = diag
(√

E
(
z̃j z̃Tj | xj

))
.
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S3.2 New Update Rules for Sparse Loadings

The update rule for FABIA is derived from Eq. (S1) and Eq. (S2) below.

For FABIAS we defined sparseness as

sp(λi) =
√
n −

∑n
k=1 |λki| /

∑n
k=1 λ

2
ki√

n − 1
,

and have an update rule given desired sparseness of spL:

Λnew = proj

(
1
l

∑l
j=1 xj E (z̃j | xj)T

1
l

∑l
j=1 E(z̃j z̃Tj | xj)

, spL

)
.

Here we mean that given

Λtemp =
1
l

∑l
j=1 xj E (z̃j | xj)T

1
l

∑l
j=1 E(z̃j z̃Tj | xj)

,

the actual update is

∀i : λnew
i = proj

(
λtemp
i , spL

)
= min

λ

∥∥∥λ − λtemp
i

∥∥∥2
s.t. sp(λ) = spL and ‖λ‖ = 1 .

The length of the vector λ is kept at 1 by ‖λ‖ = 1, but another constant length c is possible giving
‖λ‖2 = c.

S3.3 Extremely Sparse Priors

Some gene expression data sets are sparser than Laplacian. In estimating DNA copy numbers
with Affymetrix SNP 6 arrays, we observed a kurtosis larger than 30. Since noise reduces the
sparseness, we need extremely sparse priors to address the characteristics of distributions with
such heavy tails.

S3.3.1 Extremely Sparse Priors on Loadings

The derivatives of the negative “log”-densities of the distributions listed in Section 3.3 of the main
paper are given as follows:

Generalized Gaussians:

∂ (− ln p(z))
∂z

∝ β|z|β − 1, where 0 < β ≤ 1.

Jeffrey’s prior:

∂ (− ln p(z))
∂z

∝ 1
|z|
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Improper prior:

∂ (− ln p(z))
∂z

∝ β|z|−β − 1, where 0 < β.

Let us denote the negative exponent of |z| in the derivatives by spl:

spl =


1 − β for generalized Gaussian
1 for Jeffrey’s prior
1 + β for the improper prior

All spl ≥ 0 are possible, where spl = 0 corresponds to the Laplace prior and a larger spl
represents sparser priors.

For the M-step of the EM algorithm on the posterior on the parameters, we have to solve

Λnew 1
l

l∑
j=1

E
(
z̃j z̃

T
j | xj

)
− 1

l

l∑
j=1

xj E (z̃j | xj)T +
α

l
Ψ Λ−spl = 0 , (S1)

where we define Λ−spl = |Λ|−spl sign (Λ) with element-wise operations (absolute value, sign,
exponentiation, multiplication). This results in the following solution:

Λnew =
(1
l

l∑
j=1

xj E (z̃j | xj)
T − α

l
Ψ Λ−spl

) (1
l

l∑
j=1

E
(
z̃j z̃

T
j | xj

))−1

(S2)

=
( l∑

j=1

xj E (z̃j | xj)
T
) ( l∑

j=1

E
(
z̃j z̃

T
j | xj

))−1

︸ ︷︷ ︸
=Λtmp

−
(
α Ψ Λ−spl

) ( l∑
j=1

E
(
z̃j z̃

T
j | xj

))−1

︸ ︷︷ ︸
=Λpr

Without the prior, the solution would be Λtmp; correspondingly, Λpr is the contribution of the
prior. The goal is to produce a sparse solution. However, especially for an α that is not sufficiently
small, the prior’s contribution Λpr may “overshoot” zero. Therefore, we propose the following
truncation update (for all k = 1, . . . , n and all i = 1, . . . , p):

λnew
ki =

{
λtmp
ki − λpr

ki if sign(λtmp
ki − λpr

ki) = sign(λtmp
ki )

0 otherwise

S3.3.2 Extremely Sparse Priors on Factors

We use the same priors as for the loadings. We want to represent the priors through a convex
variational form according to Palmer et al. (2006). We have to show that

g(z) = − ln p(
√
z)

is increasing and concave for z > 0. To this end, we consider first and second order derivatives of
our three extremely sparse priors:
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Generalized Gaussians: corresponds to g(z) = zβ/2 with 0 < β ≤ 1, leading to

∂g(z)
∂z

=
β

2
|z|β/2 − 1 > 0 ,

∂2g(z)
∂z2

= − β

2
(1 − β/2) |z|β/2 − 2 < 0 .

Jeffrey’s prior: corresponds to g(z) = 1
2 ln |z|, yielding

∂g(z)
∂z

=
1
2

1
|z|

> 0 and
∂2g(z)
∂z2

= − 1
2

1
|z|2

< 0 .

Improper prior: corresponds to g(z) = − z− β/2 with β > 0, resulting in

∂g(z)
∂z

=
β

2
|z|−β/2 − 1 > 0 ,

∂2g(z)
∂z2

= − β

2
(1 + β/2) |z|− β/2 − 2 < 0 .

We can summarize that, for all three priors, g is increasing and concave for z > 0, which allows
us to represent the priors through a convex variational form.

According to Palmer et al. (2006), therefore, the update for the variational parameter ξj is

ξj = 2
∂g

∂z̃

(
diag

(
E
(
z̃j z̃

T
j | xj

)))
,

which results in the following updates:

Generalized Gaussians:

ξj = β diag
(
E
(
z̃j z̃

T
j | xj

))β/2 − 1

Jeffrey’s prior:

ξj = diag
(
E
(
z̃j z̃

T
j | xj

))−1

Improper prior:

ξj = β diag
(
E
(
z̃j z̃

T
j | xj

))−β/2 − 1

We denote the negative exponent of E
(
z̃j z̃

T
j | xj

)
in the update by spz:

spz =


1 − β/2 for generalized Gaussian
1 for Jeffrey’s prior
1 + β/2 for improper prior

This definition covers all spz ≥ 1/2. The smallest spz = 1/2 (β = 1) represents the Laplace prior
and spz > 1/2 leads to sparser priors; the update of the variational variable can then we written in
the following general form:

ξj ∝ diag
(
E
(
z̃j z̃

T
j | xj

)spz
)
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S3.4 Data Preprocessing and Initialization

The data x may be centered to zero mean, to zero median, or to zero mode. The latter two
centerings are supposed to result in sparser raw data. We recommend median centering because it
is both suited for giving sparse data and robust. In a second step, the data can be normalized.

Centering

Our prior distribution p(z̃) is assumed to be unimodal, symmetric, decorrelated and to have zero
mean. The additive noise is assumed to be Gaussian with mean 0. Thus, the model distribution
p(x) of the observations x is unimodal and symmetric. The symmetry follows from

p(x | z̃) ∼ N (x−Λz̃ , Ψ)
p(x | z̃) = p(−x | −z̃)

and

p(x) =
∫
p(x | z̃) p(z̃)dz̃

=
∫
p(−x | −z̃) p(−z̃)dz̃ = p(−x) ,

where, in the second equality, the change of the dz̃ to d(−z̃) and the change of integration limits
introduce both a “−”-sign which cancels. The unimodality follows from (Dharmadhikari and
Jogdeo, 1976, Theorem 3.4).

For the first and third moment of p(x), we obtain immediately

E(x) = 0 and E(x3) = 0 ,

where the latter means that all third moments are zero. The second moment of p(x) is

E(x xT ) = ΛE(zzT )ΛT + ΛE(z)E(εT ) + E(z)E(ε)ΛT + E(ε εT )

= ΛΛT + diag(σ2
k) = ΛΛT + Ψ .

Note that, for a unimodal distribution of a random variable x with E(x) = 0, E(x2) = 1, and
E(x3) = τ , the mode is −1

2τ and the median −1
6τ (Haldane, 1942; Hall, 1980). For p(x) we see

that τ = 0. The mean, the mode, and the median are all zero for our model.

If the real underlying distribution or the empirical values are skewed, then mean, median, and
mode differ from each other. In this case, we can either set the mean, the median, or the mode to
zero. For the latter, we either add 1

2τ to x giving E(x) = 1
2τ to move the mode to zero, or we

subtract 3 ·median from each x using median = −1
6τ .

We have the following centering methods:

Zero mean centering — not sparse.

Zero median centering — sparser than mean and robust.

Zero mode centering — sparser but less robust.

Since sparseness is one of the key features of our model, we want to set the mode to zero. However,
the estimation of τ is not robust, therefore we prefer zero median centering because the median is
closer to the mode than the mean.
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Normalization

If the correlation of weak signals is of interest too, we recommend to normalize the data. Our R
package supports the following two methods:

1. Row-wise division by standard deviation (scaling to unit variance)

2. Row-wise division by the difference of 75% and 25% quantile

Initialization

The simplest strategy is to initialize Λ randomly while ensuring that

Ψ = diag
(
covar(x)−ΛΛT

)
≥ δ > 0 .

Random initialization with the same range is justified after normalization of the components to
unit second moment. The variational parameter vectors ξj are initialized by vectors of ones.

S4 Information Content of Biclusters

A highly desired property for biclustering algorithms is to rank the extracted biclusters analogously
to principal components which are ranked according to the data variance they explain. We rank
biclusters according to the information they contain about the data.

S4.1 Information of the Latent Variables on Observations

We measure the information in biclusters through the mutual information between z̃ and x, that
is, how much information about x is contained in z̃. This idea is the basis of the I/NI calls in
(Talloen et al., 2007).

The entropy of a multivariate Gaussian x ∼ N (µ,Σ) with density

p(x) =
1

(2 π)n/2 |Σ|1/2
exp

(
− 1

2
(x− µ)T Σ−1 (x− µ)

)
is

H (N (µ,Σ)) = ln
(√

(2 π e)n |Σ|
)
.

Mutual information of x and z̃ is defined as

I(x; z̃) = H(x) − H(x | z̃) .

In our model, we have

xj ∼ N
(
0 , Ψ + Λ Ξj ΛT

)
and xj | z̃j ∼ N (Λ z̃j , Ψ) .
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Thus, the mutual information is

I(xj ; z̃j) = H(xj) − H(xj | z̃j)

= ln
(√

(2 π e)n |Ψ + Λ Ξj ΛT |
)
− ln

(√
(2 π e)n |Ψ|

)
=

1
2

ln
∣∣(Ψ + Λ Ξj ΛT

)
Ψ−1

∣∣
=

1
2

ln
∣∣In + Λ Ξj ΛT Ψ−1

∣∣
=

1
2

ln
∣∣Ip + ΛT Ψ−1 Λ Ξj

∣∣
=

1
2

ln
∣∣Ip + Ξj ΛT Ψ−1 Λ

∣∣ ,
where we applied Sylvester’s theorem for determinants,

|In + U V T | = |Ip + V T U |,

which is a special case of the generalization of the matrix determinant lemma:1

∣∣A + U V T
∣∣ =

∣∣I + V T A−1 U
∣∣ |A| .

The above formula can also be obtained from

I(xj ; z̃j) = H(z̃j) − H(z̃j | xj)

= ln
(√

(2 π e)n |Ξj |
)
− ln

(√
(2 π e)n

∣∣∣∣(ΛT Ψ−1 Λ + Ξ−1
j

)−1
∣∣∣∣
)

=
1
2

ln
∣∣∣Ξj

(
ΛT Ψ−1 Λ + Ξ−1

j

)∣∣∣
=

1
2

ln
∣∣Ip + Ξj ΛT Ψ−1 Λ

∣∣ .
The independence of the factors (up to the second moment) implies that the covariance matrix

of z̃j , i.e. Ξj , is diagonal. This allows for the expansion

Λ Ξj ΛT =
p∑
i=1

ξij λi λ
T
i ,

1http://en.wikipedia.org/wiki/Matrix_determinant_lemma
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and we obtain

I(xj ; z̃j) =
1
2

ln
∣∣In + Λ Ξj ΛT Ψ−1

∣∣
=

1
2

ln
∣∣In + Ψ−1 Λ Ξj ΛT

∣∣
=

1
2

ln
∣∣∣In + Ψ−1

p∑
i=1

ξij λi λ
T
i

∣∣∣
=

1
2

ln
∣∣∣In + Ψ−1

p−1∑
i=1

ξij λi λ
T
i + Ψ−1 ξjp λp λ

T
p

∣∣∣
=

1
2

ln
(∣∣∣In + Ψ−1

p−1∑
i=1

ξij λi λ
T
i

∣∣∣(1 + ξjpλ
T
p Ψ−1

(
In + Ψ−1

p−1∑
i=1

ξijλiλ
T
i

)−1

λp

))

=
1
2

ln
(∣∣∣In + Ψ−1

p−1∑
i=1

ξij λi λ
T
i

∣∣∣ (1 + ξjp λ
T
p

(
Ψ +

p−1∑
i=1

ξij λi λ
T
i

)−1

λp

))
,

where we again used the generalization of the matrix determinant lemma with

A = In +
p−1∑
i=1

ξij λi λ
T
i Ψ−1 .

In information-theoretic terms, this can be interpreted as

I(xj ; z̃j) = H(xj) − H(xj | z̃j)
= H(xj) − H(xj | zpj) + H(xj | zpj) − H(xj | z̃j)
= I(xj ; zpj) + I(xj ; z̃j | zpj)

with

I(xj ; zpj) =
1
2

ln
(
1 + ξpj λ

T
p

(
Ψ +

p−1∑
i=1

ξij λi λ
T
i

)−1
λp

)
and

I(xj ; z̃j | zpj) =
1
2

ln
∣∣∣In + Ψ−1

p∑
i=1

ξij λi λ
T
i

∣∣∣ .
By applying the same decomposition inductively, we obtain

I(xj ; z̃j) =
1
2

p∑
i=1

ln
(
1 + ξij λ

T
i

(
Ψ +

i−1∑
t=1

ξtj λt λ
T
t

)−1
λi

)
.

In information-theoretic terms, this can be interpreted as

I(xj ; z̃j) = I(xj ; zpj) + I(xj ; z̃j | zpj)
= I(xj ; zpj) + I(xj ; zp−1j | zpj) + I(xj ; zp−2j | zp−1j , zpj) +

. . . + I(xj ; z2j | z3j , . . . , zpj) + I(xj ; zj1 | z2j , z3j , . . . , zpj) .
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It is obvious that there is no necessity to proceed by isolating the variables in the exact order from
p down to 1. Instead, we can use any permutation (i1, . . . , ip). Then the above formula generalizes
to the following:

I(xj ; z̃j) = I(xj ; zi1j) + I(xj ; z̃j | zi1j)
= I(xj ; zi1j) + I(xj ; zi2j | zi1j) + I(xj ; zi3j | zi2j , zi1j) +

. . . + I(xj ; zip−1j | zip−2j , . . . , zi1j) + I(xj ; zipj | zip−1j , . . . , zi1j)

Finally, the mutual information between X and Z is the sum of mutual information between
each xj and its corresponding z̃j . This follows from the independence of xj , the independence of
z̃j across j, and the fact that the entropy is additive for independent variables:

I(X;Z) =
1
2

l∑
j=1

ln
∣∣Ip + ΛT Ψ−1 Λ Ξj

∣∣ .
S4.2 Information of One Latent Variable on Observations

Now we can consider the case that one factor zi is removed from the final model. Thus, the
explained covariance

ξij λi λ
T
i

is lost and must be considered as noise. Hence, we have

xj | (z̃j \ zij) ∼ N
(
Λ z̃j |zij=0 , Ψ + ξij λi λ

T
i

)
.

Then the information of this factor in the context of the other factors can be expressed by

I(xj ; zij | (z̃j \ zij)) = H(xj | (z̃j \ zij)) − H(xj | z̃j)

= ln
(√

(2 π e)n
∣∣Ψ + ξij λi λTi

∣∣) − ln
(√

(2 π e)n |Ψ|
)

=
1
2

ln
∣∣(Ψ + ξij λi λ

T
i

)
Ψ−1

∣∣ =
1
2

ln
∣∣In + ξij λi λ

T
i Ψ−1

∣∣
=

1
2

ln
(
1 + ξij λ

T
i Ψ−1λi

)
.

The information of the i-th factor in the context of the other factors can also be expressed as

I(xj ; zij | (z̃j \ zij)) = H(zij | (z̃j \ zij)) − H(zij | (z̃j \ zij),xj)

= ln
(√

(2 π e) ξij

)
− ln

(√
(2 π e)

(
ξ−1
ij + λTi Ψ−1λi

)−1
)

=
1
2

ln
(
1 + ξij λ

T
i Ψ−1λi

)
.

Finally, the mutual information between the observed data X and the i-th factor zTi is the
sum of mutual information between xj and zij . This follows from the independence of xj , the
independence of zij , and the fact the entropy is additive for independent variables:

I(X; zTi | (Z \ zTi )) =
1
2

l∑
j=1

ln
(
1 + ξij λ

T
i Ψ−1λi

)
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Normalizing the Information

If the bicluster size is not of interest, the information content can be normalized to the range [0, 1]
through

l∑
j=1

H(zij | (z̃j \ zij)) =
l

2
ln (2 π e) +

1
2

l∑
j=1

ln ξij .

S5 Extracting Members of Biclusters

Since we have

Λ Z = Λ

√
1
l

diag (Z ZT )

(√
1
l

diag (Z ZT )

)−1

Z ,

we can define

Λ̂ = Λ

√
1
l

diag (Z ZT ) and Ẑ =

(√
1
l

diag (Z ZT )

)−1

Z .

This scaling normalizes the moments of the factors to 1.

Now a threshold thresZ on the factors can be chosen. We set thresZ = 0.5 in our experiments.
For the Laplace distribution with variance 1, we then obtain 1

2 exp(−
√

2/2) ≈ 0.25, which means
25% of the samples can belong to a bicluster. For the improper distribution spz = 1, the percentage
of samples that belong to a bicluster would be smaller, because more zij are close to zero.

Since biclusters may overlap, the contribution of λkizij that are relevant must be estimated.
Therefore, we we first estimate the variance of ΛZ by

vLZ = E
((
λ̂ki ẑij

)2) =
1

p l n

(p,l,n)∑
(i,j,k)=(1,1,1)

(
λ̂ki ẑij

)2
=

1
p n

(p,n)∑
(i,k)=(1,1)

(
λ̂ki
)2 1

l

l∑
j=1

(
ẑij
)2

=
1
p n

(p,n)∑
(i,k)=(1,1)

(
λ̂ki
)2

= var(Λ) .

Here we used the fact that the factors are normalized and 1
l

∑l
j=1

(
ẑij
)2 = 1. We set the standard

deviation sdLZ =
√

vLZ to the product of both thresholds which is solved for thresL:

thresL =
sdLZ
thresZ

=
sdL

thresZ
,

where sdL =
√

var(Λ).



S6 Experiments 17

Note that the average contribution sdLZ includes elements close to zero that do not belong to
any bicluster. Therefore, sdLZ may underestimate the contribution of a bicluster, because the non-
bicluster elements should not count. On the other hand, both λki and zij are assumed to stem from
sparse distributions which favor large values that might dominate the second moment. In this case,
sdLZ overestimates the contribution of a bicluster, because large values dominate. Summarizing,
the choice of thresL is a trade-off between underestimation due to sparseness and overestimation
due to large values.

S6 Experiments

S6.1 Evaluating Biclustering Results

Let A1, . . . ,Ap be the true biclusters and B1, . . . ,Bq biclusters extracted by some biclustering
method. Here a bicluster is supposed to be a set of index pairs (k, j) to identify matrix elements,
i.e. expression values, which are grouped together. Then the similarity index matrix I is given as

Irs = ja (Ar,Bs) ,

where r ∈ {1, . . . , p} and s ∈ {1, . . . , q} and ja is the Jaccard index. These indices measure the
similarity of two biclusters — here the similarity between biclusters Ar and Bs.

We use the Munkres algorithm implemented in the R package ‘truecluster’ (Oehlschlägel,
2006) to compute an optimal assignment of biclustersB1, . . . ,Bq to the true biclustersA1, . . . ,Ap.
The optimal assignment is given as a set of pairs{

(r1, s1), . . . , (rmin(p,q), smin(p,q))
}
,

where all r1, . . . , rmin(p,q) are pairwise different and all s1, . . . , smin(p,q) are pairwise different.
The optimal score is given as

v =
min(p,q)∑
i=1

ja (Ari ,Bsi)

The final consensus score s is computed as

s =
v

max(p, q)

in order to ensure that sets with a single bicluster and sets with all possible biclusters do not obtain
the maximal score.

S6.2 Compared Methods

S6.2.1 Settings of Compared Methods

We compared FABIA and FABIAS with 11 other biclustering methods. Some methods were tested
for more than one setting. We denote these variants as method_variant (e.g. plaid_ss). Table S1
provides a complete overview of all methods and the settings with which they were run.
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Table S1: Compared biclustering methods and their settings. An “na” entry means that the meth-
ods has not been tested on simulated data sets.

Method General settings and remarks Changes for
simulated data
(if any)

FABIA thresZ = 0.5 (for a Laplace prior, on average 25%
of the samples are assumed to belong to a bicluster),
α = 0.1, p = 5

α = 0.4, p = 13

FABIAS α = 0.4, p = 5, otherwise same as for FABIA α = 0.6, p = 13
MFSC see S6.2.2 for details, αL/Z = 0.4, p = 5 αL/Z = 0.6, p =

13
plaid_ss seekss, l = 5, layer a+ b l = 13
plaid_ms seekms, l = 5, layer a+ b l = 13
plaid_ms_5 seekms, l = 5, layer a+ b, 5 iterations l = 13
plaid_a_ss seekms, l = 5, layer a na
plaid_a_ms seekms, l = 5, layer a na
plaid_a_ms_5 seekms, l = 5, layer a, 5 iterations na
ISA_1 tc = 2.0, tg = 2.0
ISA_2 tc = 1.0, tg = 1.0
ISA_3 tc = 1.1, tg = 0.7
OPSM passed models = 10
SAMBA opt=“valsp_3ap”, overlap=0.5
SAMBA_01 opt=“valsp_3ap”, overlap=0.1 na
xMOTIF preprocessing by discretization, α = 5 (minimal num-

ber of samples in bicluster), ns=100 (number of i tri-
als), nd=100 (number of j trials), and sd=5 (seed size
of samples), alpha=0.05, number=5

number=13

Bimax preprocessing by binarization, number=5 number=13
CC α=1.2 according to (Cheng and Church, 2000), δ =

0.03 is computed from the data in (Cheng and Church,
2000) by rescaling the data range, number=5

number=13

plaid_t_ab cluster=“b”, background=“TRUE”, row.release = 0.7,
col.release = 0.7, shuffle = 3, back.fit = 0, iter.startup
= 5, iter.layer = 10, fit.model = y ∼ m + a + b,
max.layers = 5

max.layers = 13

plaid_t_a fit.model = y ∼ m + a, otherwise same as for
plaid_t_ab

max.layers = 13

FLOC M = 5 (minimal number of samples in a bicluster),
N = 30 (minimal number of genes in a bicluster),
pGene=0.1, pSample=0.1, k = 5, t = 500

k = 13

spec_1 exp preprocessing with log normalization (to neu-
tralize the preprocessing), numberOfEigenvalues=1,
withinVar=100

spec_2 preprocessing as for spec_1, numberOfEigenval-
ues=3, withinVar=20
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S6.2.2 Sparse Matrix Factorization

Nonnegative matrix factorization (Lee and Seung, 2001) is a popular multiplicative model for gene
expression data. Nonnegative matrix factorization is concerned with computing a multiplicative
decomposition of a positive data matrix X ∈ Rn×l into two positive matrices Λ ∈ Rn×p, and
Z ∈ Rp×l in the following way:

X = Λ Z =
p∑
i=1

λi z
T
i ,

The right hand side of this equation expresses the model as the sum of outer products λi ∈ Rn

and the z̃i ∈ Rl, where zTi is the i-th row of matrix Z.

To allow biclustering, in (Caldas and Kaski, 2008), the indicator variables ρki and κij of the
plaid model are used. In such a way they showed the connection of the plaid model to binary
matrix factorization (Meeds et al., 2007). We follow this idea and also introduce plaid model
indicator variables ρki and κij for nonnegative matrix factorization:

X =
p∑
i=1

diag (ρi) λi zTi diag (κi) ,

where diag(ρi) is the n × n diagonal matrix with entries ρki and diag(κi) is the l × l diagonal
matrix with entries κij .

In the final solution the indicator variables are binary which leads to binary matrix factoriza-
tion. However, during learning the plaid model, the variables ρki and κij are not binary, which
means that the values diag(ρi) λi and diag(κi) zi are sparse vectors, i.e. most components are
close to zero. If we do not enforce binary ρki and κij but small values, then this would lead to
sparse nonnegative matrix factorization.

If we skip the non-negativity constraints, then the task is sparse matrix factorization, for which
an algorithm has been suggested by Hoyer (2004). We call this method MFSC and test it in our
experiments. Note that sparse matrix factorization is suited for biclustering, but not a generative
approach.

S6.3 Simulated Data Sets with Known Biclusters

S6.3.1 Prelic Data

The characteristics of the data sets published in Prelic et al. (2006) are given as follows. It is
obvious that most of these characteristics deviate substantially from the characteristics of gene
expression data:

Data sets are small: 50 to 100 genes

Biclusters are equally sized

Biclusters are constant, i.e. all genes are up-regulated to exactly the same value
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Biclusters overlap only simultaneously on rows and columns (in gene expression, however,
more than one pathway can be switched on in a sample even if the pathways do not share
genes)

Low noise

Data distribution is bimodal (see Fig. S2) in contrast to observed distributions in gene ex-
pression data sets (see Figs. S8 and S9).

Skewness of data (0.64) is higher than observed in gene expression data sets, whereas the
excess kurtosis (0.15) is too low. In our experiments, we have on average zero skewness
(note that the skewness in gene expression data set is sometimes positive and sometimes
negative) and average excess kurtosis of 0.65.
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Figure S2: Prelic data sets with noise variance 1, 0.4, 0.2 per row. The skewness is on average
0.64 and the excess kurtosis is on average 0.15.

S6.3.2 Qubic Data

Li et al. (2009) have modified the data sets of Prelic et al. (2006) to make them more realistic.
They do not only contain constant biclusters, but also scaling patterns. This accounts for the fact
that there are also down-regulated genes in gene expression. However, the benchmark data set of
Li et al. (2009) still contains most of the characteristics of the data sets of Prelic et al. (2006).
Especially the moments do not agree to the moments observed in gene expression data sets.

The data in (Li et al., 2009, Supplementary material) were generated as follows:

“In scenario 1, we generated two datasets. We first implant ten non-overlapping biclusters of
scaling patterns of size 10(genes)x10(conditions) into a background matrix of size 100x100



S6 Experiments 21

with its σ ranging from 0 to 0.25, and then implant ten non-overlapping biclusters of scaling
patterns of size 5(genes)x10(conditions) into the background matrix of size 50x50 with its σ
ranging from 0 to 0.25. In scenario 2, the background variation parameter σ was 0, and
we set all entries of the first (last) two rows to 1 (-1) so that we can simulate the situation
where some transcription factors can be in more than one transcription modules, i.e., all the
implanted biclusters shared the first two and the last two genes. We then implant ten biclusters
of scaling patterns with size (10+d)x(10+d) into a (100+d)x(100+d) matrix at the interval of
10 genes and 10 conditions, forcing the biclusters to overlap with each other at different
levels.”
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Figure S3: Examples of Qubic data sets. A noise-free one (left) and a noisy one (right).

For larger data sets, only computation times are reported in (Li et al., 2009), but no results
about biclustering performance are made available.

Figure S4 shows the result of FABIA on the most complex data set from Li et al. (2009).
FABIA shows better performance than any other method except Qubic with non-standard param-
eter settings.

S6.3.3 Our Simulated Data Sets

Figure S5 shows the first three of our simulated data sets, with and without noise added. Figure S6
shows another three data sets created according to the same data generation procedure as all other
simulated data sets, but this time with biclusters arranged as blocks. Figure S7 shows distributions
of three of our simulated data sets.

For the simulated data set, we computed the information content of the biclusters. Addition-
ally we computed the similarity of the biclusters to the true biclusters assigned by the Munkres
algorithm.

In order to validate our method for extracting the information content of biclusters, we sorted
biclusters according to the similarity to true biclusters and computed the information content for
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Figure S4: Results on the most complex data set from Li et al. (2009) using the quality measure
in Li et al. (2009).

every bicluster. The left-hand side of Table S2 shows that the biclusters with highest similarity
to true biclusters have highest information content. Thus, the information content is useful for
selecting and ranking the biclusters. The right-hand side of Table S2 shows the average similarity
rank after the biclusters are sorted according to the information content. Biclusters with high
information content also have high similarity to true biclusters. Finally, we applied a two-sided
Spearman rank correlation test to evaluate the to which extent information content and similarity
to true biclusters are monotonically correlated. The resulting p-values are presented in the main
paper.
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Experiment 1: Noisy Data
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Experiment 1: Noise Free Data
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Experiment 2: Noisy Data
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Experiment 2: Noise Free Data
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Figure S5: The first three data sets of our experiments. Left: noisy data. Right: noise free data.
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FABIA: reconstructed data
( 1000  genes,  100  samples,  13  biclusters )
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Figure S6: Three data sets with the same parameters (noise, size, overlap, etc.) as in our experi-
ments, but with biclusters arranged in blocks for better visualization.
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Figure S7: Our experimental data sets. The skewness is on average 0.0 and the excess kurtosis is
on average 0.65.

Table S2: Left: average of information content sorted according to the bicluster similarity (Jaccard
index). Biclusters with highest similarity to true biclusters have highest information content which
is therefore useful for selecting and ranking the biclusters. Right: The average similarity rank
after the biclusters are sorted according to the information content. In both tables, the values in
parentheses are the standard deviations.

FABIA FABIAS
1 330 (4.8) 373 (9.2)
2 324 (6.4) 366 (2.5)
3 318 (5.5) 365 (4.3)
4 287 (2.6) 351 (11)
5 263 (0.5) 331 (4.3)
6 232 (21) 313 (1.9)
7 199 (4.2) 302 (0.5)
8 154 (9.6) 242 (7.7)
9 96 (12) 154 (1.9)

10 17 (20) 57 (23)
11 0 (0) 5 (28)
12 0 (0) 0 (0)
13 0 (0) 0 (0)

FABIA FABIAS
1 2.9 (0.3) 3.0 (0.1)
2 3.5 (0.2) 3.6 (0.1)
3 3.6 (0.3) 4.0 (0.2)
4 4.3 (0.1) 4.5 (0.1)
5 4.7 (0.2) 4.7 (0.3)
6 4.9 (0.1) 4.9 (0.2)
7 5.6 (0.1) 5.9 (0.01)
8 6.1 (0.1) 6.7 (0.6)
9 7.3 (0.03) 8.0 (0.1)

10 8.2 (0.1) 8.9 (0.1)
11 8.4 (0.1) 9.6 (0.04)
12 8.4 (0.1) 9.7 (0.03)
13 8.4 (0.1) 9.7 (0.03)
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S6.3.4 Data with Additive Biclusters

We also generated data according to an additive model structure in order to analyze how well
FABIA and FABIAS perform on data that do not satisfy the multiplicative model assumptions. We
generated the biclusters as in previous Subsection S6.3.3:

Genes: Randomly choose the number Nλ
i of genes in bicluster i from {10, . . . , 210}, choosing

Nλ
i genes randomly from {1, . . . , 1000}.

Samples: Randomly choose the number Nz
i of samples in bicluster i from {5, . . . , 25}, choosing

Nz
i samples randomly from {1, . . . , 100}.

Noise: Finally, we draw the Υ entries (additive noise on all entries) according toN (0, 32). Using
this procedure, noisy biclusters of random size between 10 × 5 and 210 (genes×samples)
are generated.

In contrast to the previous experiments, we now use a general additive model for each bicluster

θkij = µi + αki + βij ,

where i is the index of the bicluster under consideration, k is the k-th row and j is the j-th column
belonging to the i-th bicluster.

We used three different models that differ in their signal-to-noise ratios. We realized this by
choosing µi from three different ranges:

M1 (low signal): For each bicluster i, µi is chosen from N (0, 22).

M2 (moderate signal): For each bicluster i, µi is chosen from N (±2, 0.52), and the sign is ran-
domly chosen.

M3 (high signal): For each bicluster i, µi is chosen from N (±4, 0.52), and the sign is randomly
chosen.

The values αki are chosen from N (0.5, 0.22) and βij are chosen from N (1, 0.52). Apart from
that, we use the same experimental setting as with the multiplicative data for all methods.

The Tables S3, S4, and S5 present the results for low, moderate, and high signal, respectively.
They show the average consensus scores with the true biclusters as defined in the main paper
(standard deviation in parentheses). In all experiments, FABIAS gives the best results followed by
FABIA. The next best methods are either plaid_ms_5 or ISA_2.

We explain the superiority of FABIA and FABIAS on data sets where the model does not
match the data generation model as follows:

1. Biclusters are constructed simultaneously, thereby, overlaps are taken into account at all
time. Therefore, large values need not be explained by separate biclusters, but can be ex-
plained as an overlap of biclusters.

2. The decorrelation of factors avoids redundant biclusters. Note, that the biclusters can still
overlap.
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3. The simplicity of the model ensures low parameter interdependencies, which facilitates
model selection. FABIA and FABIAS are quadratic in their parameters. Plaid models are
cubic in their parameters, where the indicator variables are multiplied to the general addi-
tive model that is defined on the whole data matrix. Parameter interdependencies lead to
large entries outside the main diagonal of the Fisher information matrix and may lead to
small eigenvalues. In turn, these small eigenvalues lead to a high Cramer-Rao bound on the
variance of the estimator.

Table S3: Results on the 100 simulated additive data sets with model M1 (low signal). The
numbers denote average consensus scores with the true biclusters as defined in the main paper
(standard deviations in parentheses) The best results are printed bold and the second best in italics.
FABIAS has the highest score followed by FABIA and plaid_ms_5.

method score method score
FABIA 0.109 (6e-2) SAMBA 0.002 (6e-4)
FABIAS 0.150 (7e-2) xMOTIF 0.002 (4e-4)
MFSC 0.000 (0) Bimax 0.009 (8e-3)
plaid_ss 0.039 (2e-2) CC 4e-4 (3e-4)
plaid_ms 0.064 (3e-2) plaid_t_ab 0.021 (2e-2)
plaid_ms_5 0.098 (4e-2) plaid_t_a 0.039 (3e-2)
ISA_1 0.039 (4e-2) FLOC 0.005 (9e-4)
ISA_2 0.081 (5e-2) spec_1 0.000 (0)
ISA_3 0.040 (4e-2) spec_2 0.000 (0)
OPSM 0.007 (2e-3)

Table S4: Results on the 100 simulated additive data sets with model M2 (moderate signal). The
numbers denote average consensus scores with the true biclusters as defined in the main paper
(standard deviations in parentheses) The best results are printed bold and the second best in italics.
FABIAS has the highest score followed by FABIA and then plaid_ms_5 as well as ISA_2.

method score method score
FABIA 0.196 (8e-2) SAMBA 0.002 (5e-4)
FABIAS 0.268 (7e-2) xMOTIF 0.002 (4e-4)
MFSC 0.000 (0) Bimax 0.010 (9e-3)
plaid_ss 0.041 (1e-2) CC 3e-4 (2e-4)
plaid_ms 0.072 (2e-2) plaid_t_ab 0.005 (6e-3)
plaid_ms_5 0.143 (4e-2) plaid_t_a 0.010 (9e-3)
ISA_1 0.033 (2e-2) FLOC 0.005 (1e-3)
ISA_2 0.143 (4e-2) spec_1 0.000 (0)
ISA_3 0.037 (2e-2) spec_2 0.000 (0)
OPSM 0.007 (2e-3)
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Table S5: Results on the 100 simulated additive data sets with model M3 (high signal). The
numbers denote average consensus scores with the true biclusters as defined in the main paper
(standard deviations in parentheses) The best results are printed bold and the second best in italics.
FABIAS has the highest score followed by FABIA and ISA_2.

method score method score
FABIA 0.475 (1e-1) SAMBA 0.003 (8e-4)
FABIAS 0.546 (1e-1) xMOTIF 0.001 (4e-4)
MFSC 0.000 (0) Bimax 0.014 (1e-2)
plaid_ss 0.074 (3e-2) CC 1e-4 (1e-4)
plaid_ms 0.112 (3e-2) plaid_t_ab 0.022 (2e-2)
plaid_ms_5 0.221 (5e-2) plaid_t_a 0.051 (4e-2)
ISA_1 0.140 (7e-2) FLOC 0.003 (9e-4)
ISA_2 0.229 (5e-2) spec_1 0.000 (0)
ISA_3 0.139 (7e-2) spec_2 0.000 (0)
OPSM 0.008 (2e-3)

S6.4 Gene Expression Data Sets

S6.4.1 Statistics of the Expression Data Sets

Figures S8 and S9 show plots of the data distributions of the three gene expression data sets
discussed in Section 6.4 of the main paper.
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Figure S8: Data densities of the gene expression data sets. Left: breast cancer data set, skewness
is 0.45 and excess kurtosis is 0.93; Middle: multiple tissues data set, skewness is 0.15 and excess
kurtosis is 1.3; Right: DLBCL data set, skewness is -0.05 and excess kurtosis is 0.35.

S6.4.2 Biological Interpretation

One of the goals of biclustering is to extract biological knowledge from gene expression data sets.
In this section, we want to look into the biclusters generated by FABIA.

We performed gene set enrichment analysis and created protein interaction networks. To this
end, we applied the following methods which have different levels of specificity:
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Figure S9: Density of gene expression data sets plotted together. Breast cancer: solid blue; multi-
ple tissue types: dashed red; DLBCL: dashed black.

Low specificity, on biological process level: we performed a GO (gene ontology) analysis based
on the biological process (BP). We compute the p-values and plot the hierarchy of GO
classes.

Higher specificity, on pathway level: we performed a KEGG (Kyoto Encyclopedia of Genes and
Genomes) pathway analysis (Kanehisa et al., 2010; http://www.genome.jp/kegg/) to
see whether genes interact in a pathway. KEGG has 24,329 genes in its database, but not all
Affymetrix gene identifiers could be matched to KEGG (though the large majority matches).

High specificity, on protein interaction level: we applied the “STRING 8” software (Jensen et al.,
2009; http://string-db.org/) to the genes in the biclusters and generated protein in-
teraction networks. This software displays a protein network for each cluster along with its
interconnections. Connections are labeled by colors in the following way:

Green: genes occur in close neighborhood on the chromosome;

Blue: same protein-protein interactions found across species;

Red: gene fusion has been observed for the two genes;

Purple: experimentally verified protein-protein interaction;

Black: genes that are co-expressed in the same or in other species (transferred by homol-
ogy);

Light blue: other significant protein interaction from curated databases;

Light green: relationship identified by text mining in abstracts of scientific literature.

Additionally, for the breast cancer data set, we compared our results to another data set (Finak
et al., 2008), where gene signatures for “bad outcome”, “mixed outcome”, and “good outcome”
are provided.
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Breast cancer data set

For the breast cancer data set, FABIA found three biclusters, the sizes of which are given as
follows:

Bicluster 1 2 3
Genes 98 127 50
Samples 29 38 27

Bicluster 1:

Table S6 and Figure S10 provide the GO analysis results. The bicluster has p-values that
range from 2.5 · 10−15 to 1.2 · 10−8 for terms concerning the M phase of the cell cycle and
mitosis.

The bicluster has a KEGG overlap of 93 genes. The KEGG result can be found in Table S7,
where the p-values range from 4.7 · 10−10 to 4.1 · 10−4.

The protein network graph for the first bicluster is displayed in Figure S11. It shows a cluster
with the central protein CDC2 (cell division control) which interacts with other CDCs. This
inner cluster is connected to ZBTB16 (a transcription factor) which, in turn, is connected to
RUNX1T which binds to histon deacetylases and transcription factors. Another cluster is
the KIF-related cluster that interacts with mitosis.

The most significant pathways are related to the cell cycle, where both the GO and the KEGG
analysis are in agreement. Proteins which drive this cluster are the cell division control protein
CDC2 and the mitosis related KIF proteins.

Table S6: GO analysis for biological process (BP) on FABIA bicluster 1 obtained for the breast
cancer data set.

CL GO-BP-ID p-value Odds ratio Count Size Term
1 GO:0000279 2.5e-15 20 21 37 M phase
2 GO:0022403 5.3e-13 11 23 55 cell cycle phase
3 GO:0022402 2.6e-11 8 24 70 cell cycle process
4 GO:0051301 3.1e-11 19 15 26 cell division
5 GO:0000087 3.1e-11 16 16 30 M phase of mitotic cell cycle
6 GO:0000280 3.1e-11 16 16 30 nuclear division
7 GO:0007067 3.1e-11 16 16 30 mitosis
8 GO:0048285 3.1e-11 16 16 30 organelle fission
9 GO:0007049 2.8e-09 6 26 99 cell cycle

10 GO:0000278 1.2e-08 7 19 58 mitotic cell cycle
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6−nuclear division
7−mitosis
8−organelle fission
9−cell cycle
10−mitotic cell cycle
11−spindle organization
12−organelle organization
13−microtubule cytoskeleton organization
14−microtubule−based process
15−regulation of cell cycle
16−meiosis
17−meiotic cell cycle
18−M phase of meiotic cell cycle
19−cellular component organization
20−regulation of mitotic cell cycle
21−cell cycle checkpoint
22−regulation of cyclin−dependent protein kinase activity
23−double−strand break repair via homologous recombination
24−recombinational repair
25−regulation of mitosis
26−regulation of nuclear division
27−DNA recombination
28−response to ionizing radiation
29−anaphase−promoting complex−dependent proteasomal ubiquitin−dependent protein catabolic process
30−regulation of ubiquitin−protein ligase activity during mitotic cell cycle
31−DNA metabolic process
32−DNA repair
33−double−strand break repair
34−cytoskeleton organization
35−biological_process
36−response to radiation
37−cellular process
38−regulation of cell cycle process
39−regulation of organelle organization
40−proteasomal ubiquitin−dependent protein catabolic process
41−regulation of protein kinase activity
42−regulation of cellular process
43−regulation of ubiquitin−protein ligase activity
44−all
45−nucleobase, nucleoside, nucleotide and nucleic acid metabolic process
46−ubiquitin−dependent protein catabolic process
47−response to abiotic stimulus
48−proteasomal protein catabolic process
49−cellular biopolymer metabolic process
50−cellular response to DNA damage stimulus
51−regulation of kinase activity
52−regulation of biological process
53−regulation of cellular component organization
54−regulation of ligase activity
55−nitrogen compound metabolic process
56−response to DNA damage stimulus
57−modification−dependent protein catabolic process
58−cellular response to stress
59−regulation of phosphorylation
60−biopolymer metabolic process
61−cellular metabolic process
62−primary metabolic process
63−cellular macromolecule metabolic process
64−regulation of catalytic activity
65−response to stimulus
66−regulation of transferase activity
67−proteolysis involved in cellular protein catabolic process
68−biological regulation
69−proteolysis
70−response to stress
71−metabolic process
72−phosphorylation
73−regulation of phosphate metabolic process
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Figure S10: GO analysis for biological process (BP) on FABIA bicluster 1 obtained for the breast
cancer data set. The GO hierarchy is shown. The darker the circles, the higher is the significance
(the lower the p-value).
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Table S7: KEGG analysis of FABIA bicluster 1 obtained for the breast cancer data set.

CL Name p-value q-value Count Size Term
1 path:04110 4.7e-10 9.7e-08 9 112 Cell cycle
2 path:04610 2.6e-07 2.7e-05 6 69 Complement and coagulation cascades
3 path:00641 2.4e-05 1.6e-03 3 15 3-Chloroacrylic acid degradation
4 path:00010 1.0e-04 6.9e-03 4 63 Glycolysis / Gluconeogenesis
5 path:00624 1.2e-04 8.0e-03 3 25 1- and 2-Methylnaphthalene degradation
6 path:04640 3.7e-04 2.5e-02 4 88 Hematopoietic cell lineage
7 path:00120 4.1e-04 2.8e-02 3 38 Bile acid biosynthesis

Figure S11: STRING protein network derived from genes contained in FABIA bicluster 1 of the
breast cancer data set. Connections are labeled as described on p. 29.
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Bicluster 2:

Table S8 and Figure S12 present the GO analysis results. The bicluster has p-values between
1.4 · 10−26 and 2.3 · 10−5 for terms concerning the immune response and chemotaxis.

The bicluster has a KEGG overlap of 118 genes. The results are shown in Table S9, where
the p-values range from 0 (too small to be displayed by the program) to 2.6 · 10−4.

Figure S13 visualizes the protein interaction network for the second bicluster. It contains
proteins like CCR5 (C-C chemokine receptor type 5), STAT1 (Signal transducer and activa-
tor of transcription 1-alpha/beta), CCL4 (Small inducible cytokine A4 precursor), CSF2RB
(Cytokine receptor common beta chain precursor), IL2RB (Interleukin-2 receptor subunit
beta precursor), CD86 (T-lymphocyte activation antigen CD86 precursor), which belong to
a family of signaling and regulative proteins related to the immune system. Cytokine and
interleukin are the main regulatory signal carriers in this protein network.

Again we have a perfect agreement between the GO and the KEGG analysis. The most significant
pathways are related to cytokine-cytokine receptor interaction, but also other immune system re-
sponses are relevant. Note that cytokines are important regulators and mobilizers of the immune
response.

Table S8: GO analysis for biological process (BP) on FABIA bicluster 2 obtained for the breast
cancer data set.

CL GO-BP-ID p-value Odds ratio Count Size Term
1 GO:0006955 1.4e-26 13 51 113 immune response
2 GO:0002376 1.8e-23 9 58 167 immune system process
3 GO:0050896 1.3e-13 5 70 350 response to stimulus
4 GO:0006952 3.2e-09 5 30 102 defense response
5 GO:0009615 1.6e-06 10 11 22 response to virus
6 GO:0006935 1.7e-06 6 15 40 chemotaxis
7 GO:0042330 1.7e-06 6 15 40 taxis
8 GO:0051707 1.3e-05 5 15 46 response to other organism
9 GO:0006954 1.6e-05 4 19 70 inflammatory response

10 GO:0007626 2.3e-05 5 15 48 locomotory behavior
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26−regulation of cellular process
27−all
28−cellular process
29−regulation of biological process
30−biological regulation

Figure S12: GO analysis for biological process (BP) on FABIA bicluster 2 obtained for the breast
cancer data set. The GO hierarchy is shown, where darker circles indicate higher significance
(lower p-values).

Table S9: KEGG analysis of FABIA bicluster 2 obtained for the breast cancer data set.

CL Name p-value q-value Count Size Term
1 path:04060 0.0e+00 0.0e+00 20 259 Cytokine-cytokine receptor interaction
2 path:04620 3.6e-08 3.1e-06 8 102 Toll-like receptor signaling pathway
3 path:05332 5.2e-08 3.6e-06 6 42 Graft-versus-host disease
4 path:04640 2.4e-07 1.7e-05 7 88 Hematopoietic cell lineage
5 path:04612 2.6e-07 1.8e-05 7 89 Antigen processing and presentation
6 path:05330 1.1e-06 7.5e-05 5 38 Allograft rejection
7 path:04940 2.3e-06 1.6e-04 5 44 Type I diabetes mellitus
8 path:04650 3.8e-06 2.6e-04 7 132 Natural killer cell mediated cytotoxicity
9 path:04514 4.0e-06 2.7e-04 7 133 Cell adhesion molecules (CAMs)

10 path:05320 5.9e-06 4.1e-04 5 53 Autoimmune thyroid disease
11 path:04630 1.0e-05 6.9e-04 7 153 Jak-STAT signaling pathway
12 path:04670 2.6e-04 1.7e-02 5 116 Leukocyte transendothelial migration
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Figure S13: STRING protein network derived from genes found by FABIA in cluster 2 of the
breast cancer data set. Connections are labeled as described on p. 29.
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Bicluster 3:

Table S10 shows the GO analysis results. The bicluster has p-values between 1.8 · 10−3 and
5.3 · 10−3. However, these values are obtained by hits on small clusters and we think they
should not be interpreted.

The bicluster has a KEGG overlap of 51 genes and is the smallest cluster. The results are
shown in Table S11, where the only p-value is 4.5 · 10−10.

The protein network graph for the third bicluster is shown in Figure S14.

This bicluster is too small to allow for reliable biological interpretations.

Table S10: GO analysis for biological process (BP) on FABIA bicluster 3 obtained for the breast
cancer data set.

CL GO-BP-ID p-value Odds ratio Count Size Term
1 GO:0015914 1.8e-03 ∞ 2 2 phospholipid transport
2 GO:0033700 1.8e-03 ∞ 2 2 phospholipid efflux
3 GO:0009612 2.3e-03 18 3 7 response to mechanical stimulus
4 GO:0009628 4.4e-03 5 6 38 response to abiotic stimulus
5 GO:0007605 5.2e-03 12 3 9 sensory perception of sound
6 GO:0050954 5.2e-03 12 3 9 sensory perception of mechanical stimulus
7 GO:0051606 5.2e-03 12 3 9 detection of stimulus
8 GO:0010872 5.3e-03 46 2 3 regulation of cholesterol esterification
9 GO:0015810 5.3e-03 46 2 3 aspartate transport

10 GO:0034375 5.3e-03 46 2 3 high-density lipoprotein particle remodeling

Table S11: KEGG analysis of FABIA bicluster 3 obtained for the breast cancer data set.

CL Name p-value q-value Count Size Term
1 path:01430 4.5e-10 9.5e-08 8 138 Cell junctions

Finally, we compared the FABIA results with the results in (Finak et al., 2008) where gene
signatures for “bad outcome”, “mixed outcome”, and “good outcome” are provided. The overlap
of genes in the data set of Finak et al. (2008) and our breast cancer data set is 1111 genes. From
the 22 gene signature for “good outcome” of Finak et al. (2008), only 12 genes overlap with our
data set. Ten out of these 12 genes can be found in bicluster 2 of the FABIA result. A Fisher test
led to a p-value of 5.4 · 10−9. From the 24 gene signature for “mixed outcome” of Finak et al.
(2008), only 8 genes overlap with our data set. Three out of these 8 genes can be found in bicluster
1 of the FABIA result. A Fisher test led to a p-value of 0.02. This shows that other studies have
identified groups of genes similar to the ones identified by FABIA.
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Figure S14: STRING protein network derived from genes found by FABIA in cluster 3 of the
breast cancer data set. The connectivity is here much smaller than at the other clusters which
indicates that no key pathway has been found. Connections are labeled as described on p. 29.

DLBCL data set

For the DLBCL data set, FABIA found two biclusters, the sizes of which are given as follows:

Bicluster 1 2
Genes 48 70
Samples 63 61

Bicluster 1:

The GO analysis results are shown in Table S12 and in Figure S15. The bicluster has p-
values between 2.2 · 10−6 and 3.3 · 10−2. The GO terms point to transcriptomic effects.

The bicluster has a KEGG overlap of 43 genes. The KEGG result can be found in Table S13,
where the p-values range from 1.3 · 10−8 to 3.4 · 10−4.

The protein network graph for bicluster 1 is shown in Figure S16. A strong cluster can
be seen that is formed by ribosomal proteins RBS and RBL. The second strong cluster is
governed by BLNK (B-cell linker protein), LYN (Tyrosine-protein kinase Lyn), PRKCB1
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(Protein kinase C beta type). The latter is considered as a novel component of the NF-kappa-
B signaling axis responsible for the survival and activation of B-cells after BCR cross-
linking Thus, this cluster is related to B-cell/Tyrosine-kinase. Again this would make sense
with respect to the origin of the samples.

Also here the GO and KEGG analysis agree on translational processes — more specifically on
ribosome-related effects. However, KEGG found additional pathways that are related to cell re-
ceptor signaling, which corresponds well to the origin of this data set — diffuse large-B-cell
lymphoma.

Table S12: GO analysis for biological process (BP) on FABIA bicluster 1 obtained for the DLBCL
data set.

CL GO-BP-ID p-value Odds ratio Count Size Term
1 GO:0006414 2.2e-06 17 8 15 translational elongation
2 GO:0006412 2.9e-04 7 8 26 translation
3 GO:0044260 8.2e-03 2 27 257 cellular macromolecule metabolic process
4 GO:0034960 1.3e-02 2 26 250 cellular biopolymer metabolic process
5 GO:0043283 1.6e-02 2 27 267 biopolymer metabolic process
6 GO:0010467 1.8e-02 2 17 142 gene expression
7 GO:0044237 1.8e-02 2 30 312 cellular metabolic process
8 GO:0043170 2.5e-02 2 27 275 macromolecule metabolic process
9 GO:0006270 3.0e-02 13 2 4 DNA replication initiation

10 GO:0034645 3.3e-02 2 16 139 cellular macromolecule biosynthetic process
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6 78
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1819
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21

1−translational elongation
2−translation
3−gene expression
4−cellular biopolymer biosynthetic process
5−cellular protein metabolic process
6−protein metabolic process
7−cellular macromolecule biosynthetic process
8−cellular biopolymer metabolic process
9−macromolecule metabolic process
10−biopolymer biosynthetic process
11−metabolic process
12−macromolecule biosynthetic process
13−biopolymer metabolic process
14−primary metabolic process
15−cellular biosynthetic process
16−cellular macromolecule metabolic process
17−biological_process
18−biosynthetic process
19−cellular metabolic process
20−all
21−cellular process

Figure S15: GO analysis for biological process (BP) on FABIA bicluster 1 obtained for the DLBCL
data set. The GO hierarchy is shown, where darker circles indicate higher significance (lower p-
values).
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Table S13: KEGG analysis of FABIA bicluster 1 obtained for the DLBCL data set.

Name p-value q-value Count Size Term
path:03010 1.3e-08 2.8e-06 6 92 Ribosome
path:04662 9.6e-08 9.9e-06 5 64 B cell receptor signaling pathway
path:04110 4.6e-05 3.2e-03 4 112 Cell cycle
path:04520 3.2e-04 2.2e-02 3 75 Adherens junction
path:04664 3.4e-04 2.3e-02 3 77 Fc epsilon RI signaling pathway

Figure S16: STRING protein network derived from genes found by FABIA in bicluster 1 of the
DLBCL data set. Connections are labeled as described on p. 29.
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Bicluster 2:

The GO analysis results are shown in Table S14 and in Figure S17. The bicluster has p-
values between 3.2 · 10−6 and 5.1 · 10−2 and are all related to the immune system.

The bicluster has a KEGG overlap of 64 genes. The KEGG result is shown in Table S15;
the p-values range from 5.7 · 10−8 to 7.4 · 10−6.

The protein network graph for bicluster 2 is shown in Figure S18. The strongest cluster
is related to histocompatibility complex class I molecules like B2M (Beta-2-microglobulin
precursor) which is the beta-chain of major histocompatibility complex class I molecules,
CD3D (T-cell surface glycoprotein CD3 delta chain precursor), HLA proteins (HLA class
I histocompatibility antigen). Another cluster is visible around ICAM1 (Intercellular adhe-
sion molecule 1 precursor), a protein which is a ligand for the leukocyte adhesion protein
LFA-1. This cluster also includes ITGAL (Integrin alpha-L precursor) which serves as a re-
ceptor for ICAM1. Moreover, we see a cluster around IRF1 (Interferon regulatory factor 1)
which binds to the upstream regulatory region of type I IFN and IFN-inducible MHC class
I genes. The last strong cluster contains CCL (small inducible cytokine precursor) proteins.
All these clusters may be related to each other as text mining indicates.

Again the GO and KEGG analysis agree on genes that are related to the immune system. The
most significant pathways are related to cytotoxicity, cell signaling, and cytokine-cytokine receptor
interactions. Many proteins are related to the histocompatibility complex (which alerts the immune
system) or T-cell surface glycoproteins.

Table S14: GO analysis for biological process (BP) on FABIA bicluster 2 obtained for the DLBCL
data set.

CL GO-BP-ID p-value Odds ratio Count Size Term
1 GO:0002376 3.2e-06 4 32 142 immune system process
2 GO:0006955 1.7e-05 4 25 102 immune response
3 GO:0006952 2.9e-05 4 19 67 defense response
4 GO:0050896 1.6e-04 3 36 199 response to stimulus
5 GO:0009607 3.2e-04 5 11 32 response to biotic stimulus
6 GO:0051707 1.1e-03 5 9 26 response to other organism
7 GO:0042742 1.9e-03 17 4 6 defense response to bacterium
8 GO:0009617 2.6e-03 8 5 10 response to bacterium
9 GO:0006954 4.2e-03 3 11 42 inflammatory response

10 GO:0002474 5.1e-03 25 3 4 proc. and pres. of peptide antigen via MHC class I
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1−immune system process
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4−response to stimulus
5−response to biotic stimulus
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Figure S17: GO analysis for biological process (BP) on FABIA bicluster 2 obtained for the DLBCL
data set. The GO hierarchy is shown, where darker circles indicate higher significance (lower p-
values).

Table S15: KEGG analysis of FABIA bicluster 2 obtained for the DLBCL data set.

Name p-value q-value Count Size Term
path:04650 5.7e-08 6.2e-06 7 132 Natural killer cell mediated cytotoxicity
path:04514 6.0e-08 6.2e-06 7 133 Cell adhesion molecules (CAMs)
path:04060 5.3e-06 3.7e-04 7 259 Cytokine-cytokine receptor interaction
path:04620 7.4e-06 5.1e-04 5 102 Toll-like receptor signaling pathway
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Figure S18: STRING protein network derived from genes found by FABIA in bicluster 2 of the
DLBCL data set. Connections are labeled as described on p. 29.
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Multiple tissues data set

The last data set we look at is the multiple tissue data set for which FABIA found five biclusters,
the sizes of which are given as follows:

Bicluster 1 2 3 4 5
Genes 171 116 114 679 700
Samples 37 27 23 29 28

Here we restrict ourselves to a KEGG analysis, because other methods performed better than
FABIA. However, we still can demonstrate that FABIA found biologically interesting groups.

Bicluster 1 has a KEGG overlap of 147 genes. The results can be found in Table S16; the p-values
range from 4.8 · 10−9 to 7.8 · 10−4. The most significant pathways are related to the ribosome.

Table S16: KEGG analysis of FABIA bicluster 1 obtained for the multiple tissue data set.

CL Name p-value q-value Count Size Term
1 path:03010 4.8e-09 9.6e-07 9 92 Ribosome
2 path:04512 1.9e-04 1.9e-02 5 87 ECM-receptor interaction
3 path:00220 7.8e-04 4.8e-02 3 30 Urea cycle and metabolism of amino groups

Bicluster 2 has a KEGG overlap of 95 genes. The results are shown in Table S17. The p-values
range from 6.3 · 10−6 to 6.7 · 10−4. There are only few genes members of the pathways, therefore,
the biological interpretation is questionable.

Table S17: KEGG analysis of FABIA bicluster 2 obtained for the multiple tissue data set.

CL Name p-value q-value Count Size Term
1 path:05040 6.3e-06 7.8e-04 4 31 Huntington’s disease
2 path:04720 7.5e-06 7.8e-04 5 69 Long-term potentiation
3 path:04020 6.5e-05 4.5e-03 6 175 Calcium signaling pathway
4 path:05214 1.2e-04 8.0e-03 4 64 Glioma
5 path:04740 2.4e-04 1.6e-02 5 31 Olfactory transduction
6 path:04912 5.7e-04 3.8e-02 4 97 GnRH signaling pathway
7 path:04916 6.7e-04 4.4e-02 4 101 Melanogenesis

Bicluster 3 has a KEGG overlap of 109 genes. The results are shown in Table S18; p-values range
from 1.9 · 10−4 to 4 · 10−4. The p-values are not very small, though they survive FDR correction.

Table S18: KEGG analysis of FABIA bicluster 3 obtained for the multiple tissue data set.

CL Name p-value q-value Count Size Term
1 path:00410 1.9e-04 3.7e-02 3 25 beta-Alanine metabolism
2 path:01430 4.0e-04 3.9e-02 5 138 Cell junctions
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Bicluster 4 has a KEGG overlap of 613 genes. The KEGG results are shown in Table S19. The
p-values range from 0 (too small to be computed precisely) to 1.3 · 10−2. The small p-values can
be explained by the large cluster size, where genes are grouped together even if they show a weak
signal.

Table S19: KEGG analysis of FABIA bicluster 4 obtained for the multiple tissue data set.

CL Name p-value q-value Count Size Term
1 path:04110 0.0e+00 0.0e+00 28 112 Cell cycle
2 path:03030 5.7e-10 3.8e-08 11 35 DNA replication
3 path:03050 1.4e-09 6.3e-08 9 22 Proteasome
4 path:00010 4.9e-08 1.6e-06 12 63 Glycolysis / Gluconeogenesis
5 path:00230 1.9e-07 5.1e-06 17 147 Purine metabolism
6 path:00240 3.4e-06 7.5e-05 12 92 Pyrimidine metabolism
7 path:04115 7.5e-06 1.4e-04 10 68 p53 signaling pathway
8 path:04010 1.2e-05 2.0e-04 20 262 MAPK signaling pathway
9 path:04810 3.5e-05 5.1e-04 17 215 Regulation of actin cytoskeleton

10 path:03430 1.5e-04 1.8e-03 5 21 Mismatch repair
11 path:04020 1.5e-04 1.8e-03 14 175 Calcium signaling pathway
12 path:00710 2.3e-04 2.5e-03 5 23 Carbon fixation in photosynthetic organisms
13 path:05210 2.6e-04 2.7e-03 9 84 Colorectal cancer
14 path:04510 5.5e-04 5.0e-03 14 199 Focal adhesion
15 path:00620 6.1e-04 5.3e-03 6 42 Pyruvate metabolism
16 path:04912 7.7e-04 6.4e-03 9 97 GnRH signaling pathway
17 path:00071 1.1e-03 8.5e-03 6 47 Fatty acid metabolism
18 path:00640 1.5e-03 1.1e-02 5 34 Propanoate metabolism
19 path:04512 1.6e-03 1.1e-02 8 87 ECM-receptor interaction
20 path:00590 2.3e-03 1.5e-02 6 54 Arachidonic acid metabolism
21 path:05212 2.4e-03 1.5e-02 7 73 Pancreatic cancer
22 path:01430 2.7e-03 1.6e-02 10 138 Cell junctions
23 path:00051 3.9e-03 2.1e-02 5 42 Fructose and mannose metabolism
24 path:03420 4.4e-03 2.3e-02 5 43 Nucleotide excision repair
25 path:00280 4.8e-03 2.4e-02 5 44 Valine, leucine and isoleucine degradation
26 path:04120 5.7e-03 2.7e-02 9 130 Ubiquitin mediated proteolysis
27 path:00260 5.8e-03 2.7e-02 5 46 Glycine, serine and threonine metabolism
28 path:05222 6.4e-03 2.9e-02 7 87 Small cell lung cancer
29 path:00670 7.0e-03 3.0e-02 3 16 One carbon pool by folate
30 path:00565 7.3e-03 3.1e-02 4 31 Ether lipid metabolism
31 path:00251 7.3e-03 3.1e-02 4 31 Glutamate metabolism
32 path:00900 8.9e-03 3.6e-02 2 6 Terpenoid biosynthesis
33 path:03410 9.1e-03 3.7e-02 4 33 Base excision repair
34 path:00330 1.1e-02 4.3e-02 4 35 Arginine and proline metabolism
35 path:05220 1.2e-02 4.5e-02 6 76 Chronic myeloid leukemia
36 path:04664 1.3e-02 4.7e-02 6 77 Fc epsilon RI signaling pathway

Bicluster 5 has a KEGG overlap of 617 genes. The KEGG result is shown in Table S20; p-values
range from 6.4 · 10−10 to 9.4 · 10−3. Again the small p-values are a result of the large cluster size.
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Table S20: KEGG analysis of FABIA bicluster 5 obtained for the multiple tissue data set.

CL Name p-value q-value Count Size Term
1 path:04640 6.4e-10 9.9e-08 16 88 Hematopoietic cell lineage
2 path:04080 8.7e-09 6.7e-07 25 254 Neuroactive ligand-receptor interaction
3 path:04020 1.1e-07 5.8e-06 19 175 Calcium signaling pathway
4 path:04060 3.2e-06 1.2e-04 21 259 Cytokine-cytokine receptor interaction
5 path:04514 7.5e-06 2.3e-04 14 133 Cell adhesion molecules (CAMs)
6 path:00232 1.3e-05 3.4e-04 4 7 Caffeine metabolism
7 path:04630 3.7e-05 7.6e-04 14 153 Jak-STAT signaling pathway
8 path:00983 5.3e-05 9.7e-04 8 53 Drug metabolism - other enzymes
9 path:05222 7.1e-05 1.1e-03 10 87 Small cell lung cancer

10 path:00982 9.4e-05 1.3e-03 9 73 Drug metabolism - cytochrome P450
11 path:03420 9.5e-05 1.3e-03 7 43 Nucleotide excision repair
12 path:04510 1.8e-04 2.3e-03 15 199 Focal adhesion
13 path:04810 4.2e-04 4.6e-03 15 215 Regulation of actin cytoskeleton
14 path:05215 4.3e-04 4.7e-03 9 89 Prostate cancer
15 path:04110 5.7e-04 5.8e-03 10 112 Cell cycle
16 path:04620 1.2e-03 1.1e-02 9 102 Toll-like receptor signaling pathway
17 path:04012 1.6e-03 1.5e-02 8 87 ErbB signaling pathway
18 path:05223 2.4e-03 2.0e-02 6 54 Non-small cell lung cancer
19 path:04670 2.8e-03 2.3e-02 9 116 Leukocyte transendothelial migration
20 path:05060 4.8e-03 3.3e-02 3 14 Prion disease
21 path:05210 5.5e-03 3.6e-02 7 84 Colorectal cancer
22 path:05214 5.6e-03 3.7e-02 6 64 Glioma
23 path:04530 7.6e-03 4.4e-02 9 135 Tight junction
24 path:04614 8.5e-03 4.7e-02 3 17 Renin-angiotensin system
25 path:04910 8.7e-03 4.8e-02 9 138 Insulin signaling pathway
26 path:05218 9.2e-03 4.9e-02 6 71 Melanoma
27 path:04660 9.4e-03 5.0e-02 7 93 T cell receptor signaling pathway

S6.5 Drug Design

Figure S19 shows a plot of the data distribution of the drug design gene expression data set dis-
cussed in Section 6.5 of the main paper.
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