
FABIA: Factor Analysis for Bicluster Acquisition
— Manual for the R package —

Sepp Hochreiter

Institute of Bioinformatics, Johannes Kepler University Linz
Altenberger Str. 69, 4040 Linz, Austria

hochreit@bioinf.jku.at

Version 0.1.2, December 23, 2009

Institute of Bioinformatics, Johannes Kepler University Linz

Software Manual

Institute of Bioinformatics
Johannes Kepler University Linz
A-4040 Linz, Austria

Tel. +43 732 2468 8880
Fax +43 732 2468 9511

http://www.bioinf.jku.at

mailto:hochreit@bioinf.jku.at


2 Contents

Contents

1 Introduction 4

2 Getting Started: FABIA 4
2.1 Quick start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Test on Toy Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Demos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 The FABIA Model 8
3.1 Model Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Sparse Coding and Laplace Prior . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3.1 Variational Approach for Sparse Factors . . . . . . . . . . . . . . . . . . 11
3.3.2 New Update Rules for Sparse Loadings . . . . . . . . . . . . . . . . . . 11
3.3.3 Extremely Sparse Priors . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Data Preprocessing and Initialization . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Information Content of Biclusters . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.6 Extracting Members of Biclusters . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.7 C implementation of FABIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

A Methods and Functions 14
A.1 extract_plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
A.2 extract_bic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
A.3 fabi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
A.4 fabia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
A.5 fabiaVersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
A.6 fabiap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
A.7 fabias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A.8 fabiasp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
A.9 make_fabi_data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.10 make_fabi_data_pos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.11 make_fabi_data_blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.12 make_fabi_data_blocks_pos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.13 mfsc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.14 myImagePlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
A.15 PlotBicluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
A.16 nmfdiv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
A.17 nmfeu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.18 nmfsc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
A.19 nprojfunc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
A.20 projfunc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
A.21 estimateMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

B Data Sets 62
B.1 Breast_A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
B.2 DLBCL_B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



Contents 3

B.3 Multi_A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



4 2 Getting Started: FABIA

1 Introduction

The fabia package is part of the Bioconductor (http://www.bioconductor.org) project. The pack-
age allows to extract biclusters from data sets based on a generative model. It has been designed
especially for microarray data sets, but can be used for other kinds of data sets as well.

2 Getting Started: FABIA

First load the fabia package:

R> library(fabia) ##load the fabia package

The fabia package is stand-alone and does not require other packages.

2.1 Quick start

Assume your data is in the file datafile.csv in a matrix like format then you can try out the
following steps to extract biclusters.

1. Create a working directory, e.g. c:/fabia/data in Windows or /home/myself/fabia/data
in Unix. Move the data file datafile.csv to that directory, e.g. under Unix

cp datafile.csv /home/myself/fabia/data/

or drag the file datafile.csv into that directory under Windows.

2. Start R and change to the working directory. Under Windows

R> setwd("c:/fabia/data")

and under Unix

R> setwd("/home/myself/fabia/data")

You can also start R in that directory under Unix.

3. Load the library:

R> library(fabia) ##load the fabia package

4. Read the data file “datafile.csv”:

R> X <- read.table("datafile.csv",header = TRUE, sep = "\t")

5. Select the model based on the data: 5 biclusters; sparseness 0.1; 400 cycles

R> res <- fabia(X,400,0.1,5)

6. Plot some results:

http://www.bioconductor.org
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R> rr <- extract_plot(X,res$L,res$z,ti="FABIA")

7. Extract biclusters:

R> rb <- extract_bic(res$L,res$Z,lapla=res$lapla,Psi=res$Psi)

8. Show information content of the biclusters:

R> rb$avini #$

9. List bicluster 1:

R> rb$bic[1,] #$

10. List bicluster 2:

R> rb$bic[2,] #$

11. Show bicluster 3:

R> rb$bic[3,] #$

12. List bicluster 4:

R> rb$bic[4,] #$

13. List bicluster 5:

R> rb$bic[5,] #$

14. Plot bicluster 1:

R> PlotBicluster(X,unlist(rb$bic[1,5]),unlist(rb$bic[1,3]))

15. Plot bicluster 2:

R> PlotBicluster(X,unlist(rb$bic[2,5]),unlist(rb$bic[2,3]))

16. Plot bicluster 3:

R> PlotBicluster(X,unlist(rb$bic[3,5]),unlist(rb$bic[3,3]))

17. Plot bicluster 4:

R> PlotBicluster(X,unlist(rb$bic[4,5]),unlist(rb$bic[4,3]))

18. Plot bicluster 5:

R> PlotBicluster(X,unlist(rb$bic[5,5]),unlist(rb$bic[5,3]))

19. List opposite bicluster 1:

R> rb$bicopp[1,] #$

20. Plot opposite bicluster 1:

R> PlotBicluster(X,unlist(rb$bicopp[1,5]),unlist(rb$bicopp[1,3]))



6 2 Getting Started: FABIA

2.2 Test on Toy Data Set

In the following, we describe how you can test the package fabia on a toy data set that is generated
on-line.

1. generate bicluster data, where biclusters are in block format in order to obtain a better visu-
alization of the results. 1000 observations, 100 samples, 10 biclusters:

R> dat <- make_fabi_data_blocks(n = 1000,l= 100,p = 10,f1 = 5,
f2 = 5,of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,
mean_z = 2.0,sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

2. store the generated data in variables:

R> X <- dat[[1]]
R> Y <- dat[[2]]

3. perform fabia (sparseness by Laplace prior) to extract biclusters; 400 cycles, sparseness
0.1 (Laplace), 13 biclusters:

R> resToy1 <- fabia(X,400,0.1,1.0,1.0,13)

4. Plot some results:

R> rToy1 <- extract_plot(X,resToy1$L,resToy1$Z,"FABIA",Y=Y)

5. perform fabias (sparseness by projection) to extract biclusters; 200 cycles, sparseness 0.5
(projection), 13 biclusters:

R> resToy2 <- fabias(X,200,0.5,1.0,13)

6. Plot some results:

R> rToy2 <- extract_plot(X,resToy2$L,resToy2$Z,"FABIAS",Y=Y)

7. perform fabiap (Laplace prior then projection) to extract biclusters; 200 cycles, sparse-
ness 0.1 (Laplace), 13 biclusters, 0.7 sparseness loading (projection), 0.7 sparseness factors
(projection):

R> resToy3 <- fabiap(X,200,0.1,1.0,1.0,13,0.7,0.7)

8. Plot some results:

R> rToy3 <- extract_plot(X,resToy3$L,resToy3$Z,"FABIAP",Y=Y)

9. perform mfsc (sparse matrix factorization), 13 biclusters, 0.7 sparseness loading (projec-
tion), 0.7 sparseness factors (projection):

R> resToy4 <- mfsc(X,13,sL=0.7,sZ=0.7)

10. Plot some results:

R> rToy4 <- extract_plot(X,resToy4$L,resToy4$Z,"MFSC",Y=Y)
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2.3 Demos

The package fabia has some demos which can be demonstrated by fabiaDemo.

1. demo1: toy data.

R> fabiaDemo()

Choose “1” and you get above toy data demonstration.

2. demo2: Microarray data set of van’t Veer et al. (2002) on breast cancer.

R> fabiaDemo()

Choose “2” to extract subclasses in the data set of van’t Veer as biclusters.

3. demo3: Microarray data set of Su et al. (2002) on different mammalian.

R> fabiaDemo()

Choose “3” to check whether the different mouse and human tissue types can be extracted.

4. demo4: Microarray data set of Rosenwald et al. (2002) diffuse large-B-cell lymphoma.
Hoshida et al. (2007) divided the data set into three classes

OxPhos: oxidative phosphorylation

BCR: B-cell response

HR: host response

R> fabiaDemo()

Choose “4” to check whether the different classes can be extracted.
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Figure 1: The outer product λ zT of two sparse vectors results in a matrix with a bicluster. Note,
that the non-zero entries in the vectors are adjacent to each other for visualization purposes only.

3 The FABIA Model

3.1 Model Assumptions

We define a bicluster as a pair of a row (gene) set and a column (sample) set for which the rows
are similar to each other on the columns and vice versa. In a multiplicative model, two vectors
are similar if one is a multiple of the other, that is the angle between them is zero or as realization
of random variables their correlation coefficient is one. It is clear that such a linear dependency
on subsets of rows and columns can be represented as an outer product λ zT of two vectors λ
and z. The vector λ corresponds to a prototype column vector that contains zeros for genes not
participating in the bicluster, whereas z is a vector of factors with which the prototype column
vector is scaled for each sample; clearly z contains zeros for samples not participating in the
bicluster. Vectors containing many zeros or values close to zero are called sparse vectors. Fig. 1
visualizes this representation by sparse vectors schematically.

The overall model for p biclusters and additive noise is

X =
p∑
i=1

λi z
T
i + Υ = Λ Z + Υ , (1)

where Υ ∈ Rn×l is additive noise and λi ∈ Rn and zi ∈ Rl are the sparse prototype vector and
the sparse vector of factors of the i-th bicluster, respectively. The second formulation above holds
if Λ ∈ Rn×p is the sparse prototype matrix containing the prototype vectors λi as columns and
Z ∈ Rp×l is the sparse factor matrix containing the transposed factors zTi as rows. Note that
Eq. (1) formulates biclustering as sparse matrix factorization.

According to Eq. (1), the j-th sample xj , i.e., the j-th column ofX , is

xj =
p∑
i=1

λi zij + εj = Λ z̃j + εj , (2)
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where εj is the j-th column of the noise matrix Υ and z̃j = (z1j , . . . , zpj)T denotes the j-th
column of the matrix Z. Recall that zTi = (zi1, . . . , zil) is the vector of values that constitutes the
i-th bicluster (one value per sample), while z̃j is the vector of values that contribute to the j-th
sample (one value per bicluster).

The formulation in Eq. (2) facilitates a generative interpretation by a factor analysis model
with p factors

x =
p∑
i=1

λi z̃i + ε = Λ z̃ + ε , (3)

where x are the observations, Λ is the loading matrix, z̃i is the value of the i-th factor, z̃ =
(z̃1, . . . , z̃p)T is the vector of factors, and ε ∈ Rn is the additive noise. Standard factor analysis
assumes that the noise is independent of z̃, that z̃ is N (0, I)-distributed, and that ε is N (0,Ψ)-
distributed, where the covariance matrix Ψ ∈ Rn×n is a diagonal matrix expressing independent
Gaussian noise. The parameter Λ explains the dependent (common) and Ψ the independent vari-
ance in the observations x. Normality of the additive noise in gene expression is justified by the
findings in (Hochreiter et al., 2006).

The unity matrix as covariance matrix for z̃ may be violated by overlapping biclusters, how-
ever we want to avoid to divide a real bicluster into two factors. Thus, we prefer uncorrelated fac-
tors over more sparseness. The factors can be decorrelated by setting ẑ := A−1 z̃ and Λ̂ := ΛA
with the symmetric invertible matrixA2 = E

(
z̃ z̃T

)
:

Λ z = ΛAA−1 z = Λ̂ ẑ and

E
(
ẑ ẑT

)
= A−1 E

(
z̃ z̃T

)
A−1 = A−1A2A−1 = I .

Standard factor analysis does not consider sparse factors and sparse loadings which are es-
sential in our formulation to represent biclusters. Sparseness is obtained by a component-wise
independent Laplace distribution (Hyvärinen and Oja, 1999), which is now used as a prior on the
factors z̃ instead of the Gaussian:

p(z̃) =
(

1√
2

)p p∏
i=1

e−
√

2 |z̃i|

Sparse loadings λi and, therefore sparse Λ, are achieved by two alternative strategies. In the first
model, called FABIA, we assume a component-wise independent Laplace prior for the loadings
(like for the factors):

p(λi) =
(

1√
2

)n n∏
k=1

e−
√

2 |λki| (4)

The FABIA model contains the product of Laplacian variables which is distributed proportionally
to the 0-th order modified Bessel function of the second kind (Bithas et al., 2007). For large
values, this Bessel function is a negative exponential function of the square root of the random
variable. Therefore, the tails of the distribution are heavier than those of the Laplace distribution.
The Gaussian noise, however, reduces the heaviness of the tails such that the heaviness is between
Gaussian and Bessel function tails — about as heavy as the tails of the Laplacian distribution.
These heavy tails are exactly the desired model characteristics.
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Figure 2: Left: The mode of a Laplace (red, solid) vs. a Gaussian (dashed, blue) distribution.
Right: The tails of a Laplace (red, solid) vs. a Gaussian (dashed, blue) distribution

The second model, called FABIAS, applies a prior with parameter spL on the loadings that has
only support at sparse regions. Following (Hoyer, 2004), we define sparseness as

sp(λi) =
√
n −

∑n
k=1 |λki| /

∑n
k=1 λ

2
ki√

n − 1

leading to the prior

p(λi) =

{
c for sp(λi) ≤ spL
0 for sp(λi) > spL

. (5)

3.2 Sparse Coding and Laplace Prior

Laplace prior enforces sparse codes on the factors. Sparse coding is the representation of items
by the strong activation of a relatively small set of hidden factors while the factors are almost
constant if not activated.

Laplace prior is suited for modeling strong activation for few samples while being otherwise
almost constant. Fig. 2 left shows the Laplacian mode compared to a Gaussian mode. The Lapla-
cian mode is higher and narrower. Fig. 2 right shows the tails of Gaussian and Laplace distribution,
where the latter has higher values. This means for the Laplace distribution large values are more
likely than for a Gaussian.

3.3 Model Selection

The free parameters Λ and Ψ can be estimated by Expectation-Maximization (EM; Dempster
et al., 1977). With a prior probability on the loadings, the a posteriori of the parameters is maxi-
mized like in (Hochreiter et al., 2006; Talloen et al., 2007).
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3.3.1 Variational Approach for Sparse Factors

Model selection is not straightforward because the likelihood

p(x | Λ,Ψ) =
∫
p(x | z̃,Λ,Ψ) p(z̃) dz̃

cannot be computed analytically for a Laplacian prior p(z̃). We employ a variational approach
according to Girolami (2001) and Palmer et al. (2006) for model selection. They introduce a
model family that is parametrized by ξ, where the maximum over models in this family is the true
likelihood:

arg max
ξ

p(x|ξ) = log p(x) .

Using an EM algorithm, not only the likelihood with respect to the parameters Λ and Ψ is maxi-
mized, but also with respect to ξ.

In the following, Λ and Ψ denote the actual parameter estimates. According to Girolami
(2001) and Palmer et al. (2006), we obtain

E
(
z̃j | xj

)
=
(
ΛT Ψ−1 Λ + Ξ−1

j

)−1 ΛT Ψ−1 xj and

E
(
z̃j z̃

T
j | xj

)
=
(
ΛT Ψ−1 Λ + Ξ−1

j

)−1 +

E
(
z̃j | xj

)
E(z̃j | xj)T ,

where Ξj stands for diag (ξj). The update for ξj is

ξj = diag
(√

E(z̃j z̃Tj | xj)
)
.

3.3.2 New Update Rules for Sparse Loadings

The update rules for FABIA (Laplace prior on loadings) are

Λnew =
1
l

∑l
j=1 xj E(z̃j | xj)T − α

l Ψ sign(Λ)
1
l

∑l
j=1 E(z̃j z̃Tj | xj)

(6)

diag (Ψnew) = ΨEM + diag
(α
l

Ψ sign(Λ)(Λnew)T
)

where

ΨEM = diag
(

1
l

l∑
j=1

xjx
T
j − Λnew 1

l

l∑
j=1

E (z̃j | xj) xTj
)
.

The update rules for FABIAS must take into account that each λi from Λ has a prior with
restricted support. Therefore the sparseness constraints sp(λi) ≤ spL from Eq. (5) hold. These
constraints are ensured by a projection of λi after each Λ update according to Hoyer (2004). The
projection is a convex quadratic problem which minimizes the Euclidean distance to the original
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vector subject to the constraints. The projection problem can be solved fast by an iterative proce-
dure where the l2-norm of the vectors is fixed to 1. We update diag(Ψnew) = ΨEM and project
each updated prototype vector to a sparse vector with sparseness spL giving the overall projection:

Λnew = proj

(
1
l

∑l
j=1 xj E (z̃j | xj)T

1
l

∑l
j=1 E(z̃j z̃Tj | xj)

, spL

)

3.3.3 Extremely Sparse Priors

Some gene expression data sets are sparser than Laplacian. For example, during estimating DNA
copy numbers with Affymetrix SNP 6 arrays, we observed a kurtosis larger than 30 (FABIA results
shown at http://www.bioinf.jku.at/software/fabia/fabia.html). We want to adapt our model class to
deal with such sparse data sets. Toward this end, we define extremely sparse priors both on the
factors and the loadings utilizing the following (pseudo) distributions:

Generalized Gaussians: p(z) ∝ exp
(
− |z|β

)
Jeffrey’s prior: p(z) ∝ exp (− ln |z|) = 1/|z|
Improper prior: p(z) ∝ exp

(
|z|−β

)
For the first distribution, we assume 0 < β ≤ 1 and for the third 0 < β. Note, the third distribution
may only exist on the interval [ε, a] with 0 < ε < a. We assume that ε is sufficiently small.

For the loadings, we need the derivatives of the negative log-distributions for optimizing the
log-posterior. These derivatives are proportional to |z|−spl, where spl = 0 corresponds to the
Laplace prior and spl > 0 to sparser priors. The update rule is as in Eq. (6), where sign(Λ) is
replaced by |Λ|−spl sign(Λ) with element-wise operations (absolute value, sign, exponentiation,
multiplication).

For the factors, we represent the priors through a convex variational form according to Palmer
et al. (2006). That is possible because g(z) = − ln p(

√
z) is increasing and concave for z > 0

(first order derivatives are larger and second order smaller than zero). According to Palmer et al.
(2006), the update for ξj is

ξj ∝ diag
(
E
(
z̃j z̃

T
j | xj

)spz
)

for all spz ≥ 1/2, where spz = 1/2 (β = 1) represents the Laplace prior and spz > 1/2 leads to
sparser priors.

3.4 Data Preprocessing and Initialization

The data x may be centered either to zero mean or to zero median which we prefer to obtain
sparser raw data. Then the data should be scaled to unit second moments to allow initialization of
the parameters in the same range. See the supplementary for justification of these preprocessing
steps.

The iterative model selection procedure requires initialization of the parameters Λ, Ψ, and ξj .
The simplest strategy is to initialize Λ randomly while ensuring that

Ψ = diag
(
covar(x) − Λ ΛT

)
≥ δ > 0.

http://www.bioinf.jku.at/software/fabia/fabia.html
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The variational parameter vectors ξj are initialized as vectors of ones. An alternative initializa-
tion strategy can be based on ICA. The ICA solution supplies factors ZICA that are sparse and
decorrelated.

3.5 Information Content of Biclusters

A highly desired property for biclustering algorithms is the ability to rank the extracted biclusters
analogously to principal components which are ranked according to the data variance they explain.
We rank biclusters according to the information they contain about the data. The information
content of z̃j for the j-th observation xj is the mutual information between z̃j and xj :

I(xj ; z̃j) = H(z̃j) − H(z̃j | xj) =
1
2

ln
∣∣Ip + Ξj ΛT Ψ−1 Λ

∣∣
The independence of xj and z̃j across j gives

I(X;Z) =
1
2

l∑
j=1

ln
∣∣Ip + Ξj ΛT Ψ−1 Λ

∣∣ .
For the FARMS summarization algorithm (p = 1 and Ξj = 1), this information is the negative
logarithm of the I/NI call (Talloen et al., 2007).

To assess the information content of one factor, we consider the case that factor z̃i is removed
from the final model. This corresponds to setting ξij = 0 (by ξij , we denote the i-th entry in ξj)
and therefore the explained covariance ξji λi λTi is removed:

xj | (z̃j \ zij) ∼ N
(
Λ z̃j |zij=0 , Ψ + ξij λi λ

T
i

)
The information of zij given the other factors is

I(xj ; zij | (z̃j \ zij)) = H(zij | (z̃j \ zij))−H(zij | (z̃j \ zij),xj)

=
1
2

ln
(
1 + ξij λ

T
i Ψ−1λi

)
.

Again independence across j gives

I(X; zTi | (Z \ zTi )) =
1
2

l∑
j=1

ln
(
1 + ξij λ

T
i Ψ−1λi

)
.

This information content gives that part of information in x that zTi conveys across all examples.
Note that also the number of nonzero λi’s (size of the bicluster) enters the information content.

3.6 Extracting Members of Biclusters

After model selection in Section 3.3 and ranking of bicluster in Section 3.5, the i-th bicluster has
soft gene memberships given by the absolute values of λi and soft sample memberships given by
the absolute values of zTi .
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However, applications may need hard memberships. We determine the members of bicluster i
by selecting absolute values λki and zij above thresholds thresL and thresZ, respectively.

First, the second moment of each factor is normalized to 1 resulting in a factor matrix Ẑ (in
accordance with E(z̃z̃T ) = I). Consequently, Λ is rescaled to Λ̂ such that ΛZ = Λ̂Ẑ. Now the
threshold thresZ can be chosen to determine which percentage of samples will on average belong
to a bicluster. For a Laplace prior, this percentage can be computed by 1

2 exp(−
√

2/thresZ).

In the default setting, for each factor ẑi, only one bicluster is extracted. In gene expression,
an expression pattern is either absent or present but not negatively present. Therefore, the i-th
bicluster is either determined by the positive or negative values of ẑij . Which one of these two
possibilities is chosen is decided by whether the sum over

∣∣ẑij∣∣ > thresZ is larger for the positive
or negative ẑij .

The threshold thresL for the loadings is more difficult to determine, because normalization
would lead to a rescaling of the already normalized factors. Since biclusters may overlap, the
contribution of λkizij that are relevant must be estimated. Therefore, we first estimate the standard
deviation of ΛZ by

sdLZ =

√√√√√ 1
p l n

(p,l,n)∑
(i,j,k)=(1,1,1)

(
λ̂ki ẑij

)2
.

We set this standard deviation to the product of both thresholds which is solved for thresL:
thresL = sdLZ / thresZ. However, an optimal thresL depends on the sparseness parameters
and on the characteristics of the biclustering problem.

3.7 C implementation of FABIA

The functions fabia and fabias are implemented in C. It turned out that these implementations
are not only faster, but also more precise. Especially we use an efficient Cholesky decomposition
to compute the inverse of positive definite matrices. Some R functions for computing the inverse
like solve were inferior to that implementation.

The interface between R and C is realized by the package Rcpp Samperi (2006).

A Methods and Functions

A.1 extract_plot

Extraction of Biclusters and Plotting of the Results.

1. Usage: extract_plot(X,L,Z,thresZ=0.5,ti,thresL=NULL,Y=NULL,
x11b=TRUE,norm=1,center=2)

2. Arguments:

X: original data matrix.
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L: loading, left matrix.

Z: factor, right matrix.

thresZ: threshold for sample belonging to bicluster (default 0.5).

thresL: threshold for loading belonging to bicluster (estimated if not given).

ti: plot title.

Y: alternative: noise free data matrix.

x11b: screen output or not.

norm: data normalization: default = 1 (yes), 0 (no).

center: data centering: 1 (mean), 2 (median), > 2 (mode), 0 (no); default 2.

3. Return Values:

bic: extracted biclusters.

numn: indexes for the extracted biclusters.

biclust: clusters of kmeans clustering.

pmZ: permutation matrix of z from kmeans clustering.

pmL: permutation matrix of L from kmeans clustering.

nL: normalized loadings (left matrix).

nZ normalized factors (right matrix).

Xord: sorted original matrix according to kmeans on Z and kmeans on L.

4. Produced Plots:

Y: noise free data (if available)

X: data

LZ: reconstructed data

LZ-X: error

abs(Z): absolute factors

abs(L): absolute loadings

abs(nL): absolute loadings normalized

abs(nZ): absolute factors normalized

nZ*pmZ: factors sorted

pmL*nL: loadings sorted

pmL*L*Z*pmZ: reconstructed matrix sorted

pmL*X*pmZ: original matrix sorted

Essentially the model is the sum of outer products of vectors:

X =
p∑
i=1

λi z
T
i + Υ ,
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where the number of summands p is the number of biclusters. The matrix factorization is

X = Λ Z + Υ .

The λi and zTi are used to extract the bicluster i, where a threshold determines which obser-
vations and which samples belong the the bicluster.

The method produces a couple of plots given below.

In the above plots, the matrix Λ and the matrix Z are sorted. For sorting, first kmeans on the
p dimensional space is performed and then the vectors which belong to the same cluster are put
together in the sorting. This sorting is made for visualization but in general it is not possible to
visualize all biclusters as blocks if they overlap.

In bic the biclusters are extracted according to the largest absolute values of the component i,
i.e. the largest values of λi and the largest values of zi. The factors zi are normalized to variance
1.

The components of bic are bixv, bixn, biypv, biypn, biynv, and biynn. bixv gives the
values of the observations that have absolute values above a threshold. They are sorted and bixn
gives their names (e.g. gene names). biypv gives the values of the samples that have values above
a threshold. They are sorted and biypn gives their names (e.g. sample names). biynv gives the
values of the samples that have values below this threshold. They are sorted and biynn gives their
names (e.g. sample names).

That means the samples are divided into two groups where one group shows large positive val-
ues and the other group has negative values with large absolute values. That means a observation
pattern can be switched on or switched off relative to the average value.

numn gives the indexes of bic with components: numn1 = bix ,numn2 = biyp, and numn3 =
biyn.

The kmeans clusters are given by biclust with components biclustx (the clustered obser-
vations) and biclusty (the clustered samples).

Implementation in R .

EXAMPLE:

#---------------
# TEST
#---------------

dat <- make_fabi_data_blocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

X <- dat[[1]]
Y <- dat[[2]]
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resEx <- fabia(X,20,0.3,1.0,1.0,3)

rEx <- extract_plot(X,resEx$L,resEx$Z,ti="FABIA",Y=Y,x11b=FALSE)

rEx$bic[1,]
rEx$bic[2,]
rEx$bic[3,]
rEx$biclust[1,]
rEx$biclust[2,]
rEx$biclust[3,]

#---------------
# DEMO1
#---------------

dat <- make_fabi_data_blocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

X <- dat[[1]]
Y <- dat[[2]]

resToy <- fabia(X,200,0.4,1.0,1.0,13)

rToy <- extract_plot(X,resToy$L,resToy$Z,ti="FABIA",Y=Y)

#---------------
# DEMO2
#---------------

data(Breast_A)

X <- as.matrix(XBreast)

resBreast <- fabia(X,200,0.1,1.0,1.0,5)

rBreast <- extract_plot(X,resBreast$L,resBreast$Z,ti="FABIA Breast cancer(Veer)")

#sorting of predefined labels
CBreast%*%rBreast$pmZ
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A.2 extract_bic

Extraction of Biclusters.

1. Usage: extract_bic(L,Z,thresL=0.02,thresZ=1.0,lapla=NULL,Psi=NULL)

2. Arguments:

L: loading, left matrix.

Z: factor, right matrix.

thresZ: threshold for sample belonging to bicluster (default 0.5).

thresL: threshold for loading belonging to bicluster (if not given it is estimated).

lapla: inverse variance of the variational approximation for each sample and each
factor.

Psi: noise variance vector for observations where independent noise is assumed.

3. Return Values:

bic: extracted biclusters.

numn: indexes for the extracted biclusters.

bicopp: extracted opposite biclusters.

numnopp: indexes for the extracted opposite biclusters.

avini: average over j of the variance zi given xj .

ini: for each j the variance zi given xj .

Essentially the model is the sum of outer products of vectors:

X =
p∑
i=1

λi z
T
i + Υ ,

where the number of summands p is the number of biclusters. The matrix factorization is

X = Λ Z + Υ .

Υ is the Gaussian noise with a diagonal covariance matrix which entries are given by Psi.

The Z is locally approximated by a Gaussian with inverse variance given by lapla.

The λi and zi are used to extract the bicluster i, where a threshold determines which observa-
tions and which samples belong the the bicluster.

In bic the biclusters are extracted according to the largest absolute values of the component i,
i.e. the largest values of λi and the largest values of zi. The factors zi are normalized to variance
1.

The components of bic are binp, bixv, bixn, biypv, and biypn.

binp give the size of the bicluster: number observations and number samples. bixv gives the
values of the extracted observations that have absolute values above a threshold. They are sorted.
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bixn gives the extracted observation names (e.g. gene names). biypv gives the values of the
extracted samples that have absolute values above a threshold. They are sorted. biypn gives the
names of the extracted samples (e.g. sample names).

In bicopp the opposite cluster to the biclusters are give. Opposite means that the negative
pattern is present.

The components of opposite clusters bicopp are binn, bixv, bixn, biypnv, and biynn.

binp give the size of the opposite bicluster: number observations and number samples. bixv
gives the values of the extracted observations that have absolute values above a threshold. They
are sorted. bixn gives the extracted observation names (e.g. gene names). biynv gives the values
of the opposite extracted samples that have absolute values above a threshold. They are sorted.
biynn gives the names of the opposite extracted samples (e.g. sample names).

That means the samples are divided into two groups where one group shows large positive val-
ues and the other group has negative values with large absolute values. That means a observation
pattern can be switched on or switched off relative to the average value.

numn gives the indexes of bic with components: numng = bix and numnp = biypn.

numn gives the indexes of bicopp with components: numng = bix and numnn = biynn.

Implementation in R .

EXAMPLE:

#---------------
# TEST
#---------------

dat <- make_fabi_data_blocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

X <- dat[[1]]
Y <- dat[[2]]

resEx <- fabia(X,20,0.1,1.0,1.0,3)

rEx <- extract_bic(resEx$L,resEx$Z,lapla=resEx$lapla,Psi=resEx$Psi)

rEx$bic[1,] #$
rEx$bic[2,] #$
rEx$bic[3,] #$

#---------------



20 A Methods and Functions

# DEMO1
#---------------

dat <- make_fabi_data_blocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

X <- dat[[1]]
Y <- dat[[2]]

resToy <- fabia(X,200,0.4,1.0,1.0,13)

rToy <- extract_bic(resToy$L,resToy$Z,lapla=resToy$lapla,Psi=resToy$Psi)

rToy$avini #$

rToy$bic[1,] #$
rToy$bic[2,] #$
rToy$bic[3,] #$

#---------------
# DEMO2
#---------------

data(Breast_A)

X <- as.matrix(XBreast)

resBreast <- fabia(X,200,0.1,1.0,1.0,5)

rBreast <- extract_bic(resBreast$L,resBreast$Z,lapla=resBreast$lapla,Psi=resBreast$Psi)

rBreast$avini #$

rBreast$bic[1,] #$
rBreast$bic[2,] #$
rBreast$bic[3,] #$

A.3 fabi

Factor Analysis for Bicluster Acquisition: Laplace Prior (FABI).

R implementation of fabia, therefore it is slow.

1. Usage: fabi(X,cyc,alpha,spl,spz,p,norm=1,center=2)
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2. Arguments:

X: the data matrix.

cyc: number of cycles to run.

alpha: sparseness loadings (0.1 - 1.0).

spl: sparseness prior loadings (0.5 - 4.0).

spz: sparseness factors (0.5 - 4.0).

p: number of hidden factor = number of biclusters.

norm: data normalization: default = 1 (yes), 0 (no).

center: data centering: 1 (mean), 2 (median), > 2 (mode), 0 (no); default 2.

3. Return Values:

LZ: Estimated Noise Free Data: Λ Z

L: Loadings: Λ

Z: Factors: Z

Psi: Noise variance: Ψ

lapla: Variational parameter

Biclusters are found by sparse factor analysis where both the factors and the loadings are
sparse.

Essentially the model is the sum of outer products of vectors:

X =
p∑
i=1

λi z
T
i + Υ ,

where the number of summands p is the number of biclusters. The matrix factorization is

X = Λ Z + Υ .

If the nonzero components of the sparse vectors are grouped together then the outer product
results in a matrix with a nonzero block and zeros elsewhere.

For a single data vector x that is

x =
p∑
i=1

λizi + ε = Λz̃ + ε

The model assumptions are:

Factor Prior is Independent Laplace:

p(z̃) =
(

1√
2

)p p∏
i=1

e−
√

2 |zi|
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Loading Prior is Independent Laplace:

p(λi) =
(

1√
2

)n n∏
k=1

e−
√

2 |λki|

Noise: Gaussian independent

p(ε) =
(

1√
2 π

)n n∏
k=1

1
σk
e

∑n
k=1

ε2k
σ2
k

Data Mean:

E(x) = E(Λ z̃ + ε) = Λ E(z̃) + E(ε) = 0

Data Covariance:

E(x xT ) = ΛE(z̃z̃T )ΛT + ΛE(z̃)E(εT ) + E(z̃)E(ε)ΛT + E(ε εT )

= ΛΛT + diag(σ2
k)

Normalizing the data to variance one for each component gives

σ2
k +

(
λk
)T
λk = 1

Here λk is the k-th row of Λ (which is a row vector of length p). We recommend to normalize the
components to variance one in order to make the signal and noise comparable across components.

Estimated Parameters: Λ and σk

Estimated Latent Variables: Z

Estimated Noise Free Data: Λ Z

Estimated Biclusters: λi zTi Larges values give the bicluster (ideal the nonzero values).

The model selection is performed by a variational approach according to Girolami (2001) and
Palmer et al. (2006).

We included a prior on the parameters and minimize a lower bound on the posterior of the
parameters given the data. The update of the loadings includes an additive term which pushes the
loadings toward zero (Gaussian prior leads to an multiplicative factor).

The code is implemented in R , therefore it is slow.

EXAMPLE:
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#---------------
# TEST
#---------------

dat <- make_fabi_data_blocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

X <- dat[[1]]
Y <- dat[[2]]

resEx <- fabi(X,10,0.3,1.0,1.0,3)

#---------------
# DEMO1
#---------------

dat <- make_fabi_data_blocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

X <- dat[[1]]
Y <- dat[[2]]

resToy <- fabi(X,200,0.4,1.0,1.0,13)

rToy <- extract_plot(X,resToy$L,resToy$Z,ti="FABI",Y=Y)

#---------------
# DEMO2
#---------------

data(Breast_A)

X <- as.matrix(XBreast)

resBreast <- fabi(X,200,0.1,1.0,1.0,5)

rBreast <- extract_plot(X,resBreast$L,resBreast$Z,ti="FABI Breast cancer(Veer)")
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#sorting of predefined labels
CBreast%*%rBreast$pmZ

#---------------
# DEMO3
#---------------

data(Multi_A)

X <- as.matrix(XMulti)

resMulti <- fabi(X,200,0.1,1.0,1.0,5)

rMulti <- extract_plot(X,resMulti$L,resMulti$Z,ti="FABI Multiple tissues(Su)")

#sorting of predefined labels
CMulti%*%rMulti$pmZ

#---------------
# DEMO4
#---------------

data(DLBCL_B)

X <- as.matrix(XDLBCL)

resDLBCL <- fabi(X,200,0.1,1.0,1.0,5)

rDLBCL <- extract_plot(X,resDLBCL$L,resDLBCL$Z,ti="FABI Lymphoma(Rosenwald)")

#sorting of predefined labels
CDLBCL%*%rDLBCL$pmZ

A.4 fabia

Factor Analysis for Bicluster Acquisition: Laplace Prior (FABIA).

C implementation of fabia.

1. Usage: fabia(X,cyc,alpha,spl,spz,p,random=NULL,scale=0.0,norm=1,center=2,lap=1.0)

2. Arguments:
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X: the data matrix.

cyc: number of cycles to run.

alpha: sparseness loadings (0.1 - 1.0).

spl: sparseness prior loadings (0.5 - 4.0).

spz: sparseness factors (0.5 - 4.0).

p: number of hidden factor = number of biclusters.

random: random initialization of loadings in [-random,random] (if not given: half of
the square root of variance of component).

scale: loading vectors are scaled in each iteration to the given variance. zero (default)
indicates that non scaling.

norm: data normalization: default = 1 (yes), 0 (no).

center: data centering: 1 (mean), 2 (median), > 2 (mode), 0 (no); default 2.

lap: minimal value of the variational parameter, default = 1.

3. Return values:

LZ: Estimated Noise Free Data: Λ Z

L: Loadings: Λ

Z: Factors: Z

Psi: Noise variance: Ψ

lapla: Variational parameter

Biclusters are found by sparse factor analysis where both the factors and the loadings are
sparse.

Essentially the model is the sum of outer products of vectors:

X =
p∑
i=1

λi z
T
i + Υ ,

where the number of summands p is the number of biclusters. The matrix factorization is

X = Λ Z + Υ .

If the nonzero components of the sparse vectors are grouped together then the outer product
results in a matrix with a nonzero block and zeros elsewhere.

For a single data vector x that is

x =
p∑
i=1

λizi + ε = Λz̃ + ε

The model assumptions are:
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Factor Prior is Independent Laplace:

p(z̃) =
(

1√
2

)p p∏
i=1

e−
√

2 |zi|

Loading Prior is Independent Laplace:

p(λi) =
(

1√
2

)n n∏
k=1

e−
√

2 |λki|

Noise: Gaussian independent

p(ε) =
(

1√
2 π

)n n∏
k=1

1
σk
e

∑n
k=1

ε2k
σ2
k

Data Mean:

E(x) = E(Λ z̃ + ε) = Λ E(z̃) + E(ε) = 0

Data Covariance:

E(x xT ) = ΛE(z̃z̃T )ΛT + ΛE(z̃)E(εT ) + E(z̃)E(ε)ΛT + E(ε εT )

= ΛΛT + diag(σ2
k)

Normalizing the data to variance one for each component gives

σ2
k +

(
λk
)T
λk = 1

Here λk is the k-th row of Λ (which is a row vector of length p). We recommend to normalize the
components to variance one in order to make the signal and noise comparable across components.

Estimated Parameters: Λ and σk
Estimated Latent Variables: Z

Estimated Noise Free Data: Λ Z

Estimated Biclusters: λi zTi Larges values give the bicluster (ideal the nonzero values).

The model selection is performed by a variational approach according to Girolami (2001) and
Palmer et al. (2006).

We included a prior on the parameters and minimize a lower bound on the posterior of the
parameters given the data. The update of the loadings includes an additive term which pushes the
loadings toward zero (Gaussian prior leads to an multiplicative factor).

The code is implemented in C using the Rcpp package.

EXAMPLE:
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#---------------
# TEST
#---------------

dat <- make_fabi_data_blocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

X <- dat[[1]]
Y <- dat[[2]]

resEx <- fabia(X,50,0.3,1.0,1.0,3)

#---------------
# DEMO1
#---------------

dat <- make_fabi_data_blocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

X <- dat[[1]]
Y <- dat[[2]]

resToy <- fabia(X,200,0.4,1.0,1.0,13)

rToy <- extract_plot(X,resToy$L,resToy$Z,ti="FABIA",Y=Y)

#---------------
# DEMO2
#---------------

data(Breast_A)

X <- as.matrix(XBreast)

resBreast <- fabia(X,200,0.1,1.0,1.0,5)

rBreast <- extract_plot(X,resBreast$L,resBreast$Z,"FABIA Breast cancer(Veer)")

#sorting of predefined labels
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CBreast%*%rBreast$pmZ

#---------------
# DEMO3
#---------------

data(Multi_A)

X <- as.matrix(XMulti)

resMulti <- fabia(X,200,0.1,1.0,1.0,5)

rMulti <- extract_plot(X,resMulti$L,resMulti$Z,ti="FABIA Multiple tissues(Su)")

#sorting of predefined labels
CMulti%*%rMulti$pmZ

#---------------
# DEMO4
#---------------

data(DLBCL_B)

X <- as.matrix(XDLBCL)

resDLBCL <- fabia(X,200,0.1,1.0,1.0,5)

rDLBCL <- extract_plot(X,resDLBCL$L,resDLBCL$Z,ti="FABIA Lymphoma(Rosenwald)")

#sorting of predefined labels
CDLBCL%*%rDLBCL$pmZ

A.5 fabiaVersion

Display version info for package and for FABIA.

1. Usage: fabiaVersion()

EXAMPLE:

fabiaVersion()
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A.6 fabiap

Factor Analysis for Bicluster Acquisition: Post-Projection (FABIAP).

1. Usage: fabiap(X,cyc,alpha,spl,spz,p,sL,sZ,random=NULL,scale=0.0,
norm=1,center=2,lap=1.0)

2. Arguments:

X: the data matrix.

cyc: number of cycles to run.

alpha: sparseness loadings (0.1 - 1.0).

spl: sparseness prior loadings (0.5 - 4.0).

spz: sparseness factors (0.5 - 4.0).

p: number of hidden factor = number of biclusters.

sL: final sparseness loadings.

sZ: final sparseness factors.

random: random initialization of loadings in [-random,random] (if not given: half of
the square root of variance of component).

scale: loading vectors are scaled in each iteration to the given variance. zero (default)
indicates that non scaling.

norm: data normalization: default = 1 (yes), 0 (no).

center: data centering: 1 (mean), 2 (median), > 2 (mode), 0 (no); default 2.

lap: minimal value of the variational parameter, default = 1.

3. Return Values:

LZ: Estimated Noise Free Data: Λ Z

L: Loadings: Λ

Z: Factors: Z

Psi: Noise variance: Ψ

lapla: Variational parameter

Biclusters are found by sparse factor analysis where both the factors and the loadings are
sparse. Post-processing by projecting the final results to a given sparseness criterion.

Essentially the model is the sum of outer products of vectors:

X =
p∑
i=1

λi z
T
i + Υ ,

where the number of summands p is the number of biclusters. The matrix factorization is

X = Λ Z + Υ .
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If the nonzero components of the sparse vectors are grouped together then the outer product
results in a matrix with a nonzero block and zeros elsewhere.

For a single data vector x that is

x =
p∑
i=1

λizi + ε = Λz̃ + ε

The model assumptions are:

Factor Prior is Independent Laplace:

p(z̃) =
(

1√
2

)p p∏
i=1

e−
√

2 |zi|

Loading Prior is Independent Laplace:

p(λi) =
(

1√
2

)n n∏
k=1

e−
√

2 |λki|

Noise: Gaussian independent

p(ε) =
(

1√
2 π

)n n∏
k=1

1
σk
e

∑n
k=1

ε2k
σ2
k

Data Mean:

E(x) = E(Λ z̃ + ε) = Λ E(z̃) + E(ε) = 0

Data Covariance:

E(x xT ) = ΛE(z̃z̃T )ΛT + ΛE(z̃)E(εT ) + E(z̃)E(ε)ΛT + E(ε εT )

= ΛΛT + diag(σ2
k)

Normalizing the data to variance one for each component gives

σ2
k +

(
λk
)T
λk = 1

Here λk is the k-th row of Λ (which is a row vector of length p). We recommend to normalize the
components to variance one in order to make the signal and noise comparable across components.

Estimated Parameters: Λ and σk

Estimated Latent Variables: Z

Estimated Noise Free Data: Λ Z
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Estimated Biclusters: λi zTi Larges values give the bicluster (ideal the nonzero values).

The model selection is performed by a variational approach according to Girolami (2001) and
Palmer et al. (2006).

We included a prior on the parameters and minimize a lower bound on the posterior of the
parameters given the data. The update of the loadings includes an additive term which pushes the
loadings toward zero (Gaussian prior leads to an multiplicative factor).

Post-processing: The final results of the loadings and the factors are projected to a sparse vec-
tor according to Hoyer, 2004: given an l1-norm and an l2-norm minimize the Euclidean distance
to the original vector (currently the l2-norm is fixed to 1). The projection is a convex quadratic
problem which is solved iteratively where at each iteration at least one component is set to zero.
Instead of the l1-norm a sparseness measurement is used which relates the l1-norm to the l2-norm:

The code is implemented in C using the Rcpp package. The projection is implemented in R .

EXAMPLE:

#---------------
# TEST
#---------------

dat <- make_fabi_data_blocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

X <- dat[[1]]
Y <- dat[[2]]

resEx <- fabiap(X,50,0.3,1.0,1.0,3,0.7,0.7)

#---------------
# DEMO1
#---------------

dat <- make_fabi_data_blocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

X <- dat[[1]]
Y <- dat[[2]]

resToy <- fabiap(X,200,0.4,1.0,1.0,13,0.7,0.7)
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rToy <- extract_plot(X,resToy$L,resToy$Z,ti="FABIAP",Y=Y)

#---------------
# DEMO2
#---------------

data(Breast_A)

X <- as.matrix(XBreast)

resBreast <- fabiap(X,200,0.1,1.0,1.0,5,0.5,0.3)

rBreast <- extract_plot(X,resBreast$L,resBreast$Z,ti="FABIAP Breast cancer(Veer)")

#sorting of predefined labels
CBreast%*%rBreast$pmZ

#---------------
# DEMO3
#---------------

data(Multi_A)

X <- as.matrix(XMulti)

resMulti <- fabiap(X,200,0.1,1.0,1.0,5,0.5,0.3)

rMulti <- extract_plot(X,resMulti$L,resMulti$Z,ti="FABIAP Multiple tissues(Su)")

#sorting of predefined labels
CMulti%*%rMulti$pmZ

#---------------
# DEMO4
#---------------

data(DLBCL_B)

X <- as.matrix(XDLBCL)

resDLBCL <- fabiap(X,200,0.1,1.0,1.0,5,0.5,0.3)

rDLBCL <- extract_plot(X,resDLBCL$L,resDLBCL$Z,ti="FABIAP Lymphoma(Rosenwald)")
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#sorting of predefined labels
CDLBCL%*%rDLBCL$pmZ

A.7 fabias

Factor Analysis for Bicluster Acquisition: Sparseness Projection (FABIAS).

C implementation of fabias.

1. Usage: fabias(X,cyc,alpha,spz,p,random=NULL,norm=1,center=2,lap=1.0)

2. Arguments:

X: the data matrix.

cyc: number of cycles to run.

alpha: sparseness loadings via projection (0.1 - 0.9).

spz: sparseness factors (0.5 - 4.0).

p: number of hidden factor = number of biclusters.

random: random initialization of loadings in [-random,random] (if not given: half of
the square root of variance of component).

norm: data normalization: default = 1 (yes), 0 (no).

center: data centering: 1 (mean), 2 (median), > 2 (mode), 0 (no); default 2.

lap: minimal value of the variational parameter, default = 1.

3. Return Values:

LZ: Estimated Noise Free Data: Λ Z

L: Loadings: Λ

Z: Factors: Z

Psi: Noise variance: Ψ

lapla: Variational parameter

Biclusters are found by sparse factor analysis where both the factors and the loadings are
sparse.

Essentially the model is the sum of outer products of vectors:

X =
p∑
i=1

λi z
T
i + Υ ,

where the number of summands p is the number of biclusters. The matrix factorization is

X = Λ Z + Υ .
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If the nonzero components of the sparse vectors are grouped together then the outer product
results in a matrix with a nonzero block and zeros elsewhere.

For a single data vector x that is

x =
p∑
i=1

λizi + ε = Λz̃ + ε

The model assumptions are:

Factor Prior is Independent Laplace:

p(z̃) =
(

1√
2

)p p∏
i=1

e−
√

2 |zi|

Loading Prior has Finite Support:

p(λi) = c for ‖λi‖1 ≤ k

p(λi) = 0 for ‖λi‖1 > k

Noise: Gaussian independent

p(ε) =
(

1√
2 π

)n n∏
k=1

1
σk
e

∑n
k=1

ε2k
σ2
k

Data Mean:

E(x) = E(Λ z̃ + ε) = Λ E(z̃) + E(ε) = 0

Data Covariance:

E(x xT ) = ΛE(z̃z̃T )ΛT + ΛE(z̃)E(εT ) + E(z̃)E(ε)ΛT + E(ε εT )

= ΛΛT + diag(σ2
k)

Normalizing the data to variance one for each component gives

σ2
k +

(
λk
)T
λk = 1

Here λk is the k-th row of Λ (which is a row vector of length p). We recommend to normalize the
components to variance one in order to make the signal and noise comparable across components.

Estimated Parameters: Λ and σk

Estimated Latent Variables: Z
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Estimated Noise Free Data: Λ Z

Estimated Biclusters: λi zTi Larges values give the bicluster (ideal the nonzero values).

The model selection is performed by a variational approach according to Girolami (2001) and
Palmer et al. (2006).

The prior has finite support, therefore after each update of the loadings they are projected to
the finite support. The projection is done according to Hoyer (2004): given an l1-norm and an
l2-norm minimize the Euclidean distance to the original vector (currently the l2-norm is fixed to
1). The projection is a convex quadratic problem which is solved iteratively where at each iteration
at least one component is set to zero. Instead of the l1-norm a sparseness measurement is used
which relates the l1-norm to the l2-norm:

sparseness(λi) =
√
n −

∑n
k=1 |λki| /

∑n
k=1 λ

2
ki√

n − 1

The code is implemented in C using the Rcpp package.

EXAMPLE:

#---------------
# DEMO1
#---------------

dat <- make_fabi_data_blocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

X <- dat[[1]]
Y <- dat[[2]]

resToy <- fabias(X,200,0.8,1.0,13)

rToy <- extract_plot(X,resToy$L,resToy$Z,"FABIAS",Y=Y)

#---------------
# DEMO2
#---------------

data(Breast_A)

X <- as.matrix(XBreast)
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resBreast <- fabias(X,300,0.6,1.0,3)

rBreast <- extract_plot(X,resBreast$L,resBreast$Z,"FABIAS Breast cancer(Veer)")

#sorting of predefined labels
CBreast%*%rBreast$pmZ

#---------------
# DEMO3
#---------------

data(Multi_A)

X <- as.matrix(XMulti)

resMulti <- fabias(X,200,0.8,1.0,4)

rMulti <- extract_plot(X,resMulti$L,resMulti$Z,"FABIAS Multiple tissues(Su)")

#sorting of predefined labels
CMulti%*%rMulti$pmZ

#---------------
# DEMO4
#---------------

data(DLBCL_B)

X <- as.matrix(XDLBCL)

resDLBCL <- fabias(X,200,0.8,1.0,3)

rDLBCL <- extract_plot(X,resDLBCL$L,resDLBCL$Z,"FABIAS Lymphoma(Rosenwald)")

#sorting of predefined labels
CDLBCL%*%rDLBCL$pmZ

A.8 fabiasp

Factor Analysis for Bicluster Acquisition: Sparseness Projection (FABIASP).

R implementation of fabias, therefore it is slow.
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1. Usage: fabiasp(X,cyc,alpha,spz,p,norm=1,center=2)

2. Arguments:

X: the data matrix.

cyc: number of cycles to run.

alpha: sparseness loadings via projection (0.1 - 0.9).

spz: sparseness factors (0.5 - 4.0).

p: number of hidden factor = number of biclusters.

norm: data normalization: default = 1 (yes), 0 (no).

center: data centering: 1 (mean), 2 (median), > 2 (mode), 0 (no); default 2.

3. Return Values:

LZ: Estimated Noise Free Data: Λ Z

L: Loadings: Λ

Z: Factors: Z

Psi: Noise variance: Ψ

lapla: Variational parameter

Biclusters are found by sparse factor analysis where both the factors and the loadings are
sparse.

Essentially the model is the sum of outer products of vectors:

X =
p∑
i=1

λi z
T
i + Υ ,

where the number of summands p is the number of biclusters. The matrix factorization is

X = Λ Z + Υ .

If the nonzero components of the sparse vectors are grouped together then the outer product
results in a matrix with a nonzero block and zeros elsewhere.

For a single data vector x that is

x =
p∑
i=1

λizi + ε = Λz̃ + ε

The model assumptions are:

Factor Prior is Independent Laplace:

p(z) =
(

1√
2

)p p∏
i=1

e−
√

2 |zi|
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Loading Prior has Finite Support:

p(λi) = c for ‖λi‖1 ≤ k

p(λi) = 0 for ‖λi‖1 > k

Noise: Gaussian independent

p(ε) =
(

1√
2 π

)n n∏
k=1

1
σk
e

∑n
k=1

ε2k
σ2
k

Data Mean:

E(x) = E(Λ z̃ + ε) = Λ E(z̃) + E(ε) = 0

Data Covariance:

E(x xT ) = ΛE(z̃z̃T )ΛT + ΛE(z̃)E(εT ) + E(z̃)E(ε)ΛT + E(ε εT )

= ΛΛT + diag(σ2
k)

Normalizing the data to variance one for each component gives

σ2
k +

(
λk
)T
λk = 1

Here λk is the k-th row of Λ (which is a row vector of length p). We recommend to normalize the
components to variance one in order to make the signal and noise comparable across components.

Estimated Parameters: Λ and σk

Estimated Latent Variables: Z

Estimated Noise Free Data: Λ Z

Estimated Biclusters: λi zTi Larges values give the bicluster (ideal the nonzero values).

The model selection is performed by a variational approach according to Girolami (2001) and
Palmer et al. (2006).

The prior has finite support, therefore after each update of the loadings they are projected to
the finite support. The projection is done according to Hoyer (2004): given an l1-norm and an
l2-norm minimize the Euclidean distance to the original vector (currently the l2-norm is fixed to
1). The projection is a convex quadratic problem which is solved iteratively where at each iteration
at least one component is set to zero. Instead of the l1-norm a sparseness measurement is used
which relates the l1-norm to the l2-norm:

sparseness(λi) =
√
n −

∑n
k=1 |λki| /

∑n
k=1 λ

2
ki√

n − 1
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The code is implemented in R , therefore it is slow.

EXAMPLE:

#---------------
# TEST
#---------------

dat <- make_fabi_data_blocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

X <- dat[[1]]
Y <- dat[[2]]

resEx <- fabiasp(X,50,0.8,1.0,3)

\dontrun{
#---------------
# DEMO1
#---------------

dat <- make_fabi_data_blocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

X <- dat[[1]]
Y <- dat[[2]]

resToy <- fabiasp(X,200,0.6,1.0,13)

rToy <- extract_plot(X,resToy$L,resToy$Z,"ti=FABIASP",Y=Y)

#---------------
# DEMO2
#---------------

data(Breast_A)
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X <- as.matrix(XBreast)

resBreast <- fabiasp(X,200,0.4,1.0,5)

rBreast <- extract_plot(X,resBreast$L,resBreast$Z,ti="FABIASP Breast cancer(Veer)")

#sorting of predefined labels
CBreast%*%rBreast$pmZ

#---------------
# DEMO3
#---------------

data(Multi_A)

X <- as.matrix(XMulti)

resMulti <- fabiasp(X,200,0.4,1.0,5)

rMulti <- extract_plot(X,resMulti$L,resMulti$Z,"ti=FABIASP Multiple tissues(Su)")

#sorting of predefined labels
CMulti%*%rMulti$pmZ

#---------------
# DEMO4
#---------------

data(DLBCL_B)

X <- as.matrix(XDLBCL)

resDLBCL <- fabiasp(X,200,0.6,1.0,5)

rDLBCL <- extract_plot(X,resDLBCL$L,resDLBCL$Z,ti="FABIASP Lymphoma(Rosenwald)")

#sorting of predefined labels
CDLBCL%*%rDLBCL$pmZ
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A.9 make_fabi_data

Generation of bicluster data.

1. Usage: make_fabi_data(n,l,p,f1,f2,of1,of2,sd_noise,sd_z_noise,mean_z,
sd_z,sd_l_noise,mean_l,sd_l)

2. Arguments:

n. number of observations.

l: number of samples.

p: number of biclusters.

f1: l/f1 max. additional samples are active in a bicluster.

f2: n/f2 max. additional observations that form a pattern in a bicluster.

of1: minimal active samples in a bicluster.

of2: menial observations that form a pattern in a bicluster.

sd_noise: Gaussian zero mean noise std on data matrix.

sd_z_noise: Gaussian zero mean noise std for deactivated hidden factors.

mean_z: Gaussian mean for activated factors.

sd_z: Gaussian std for activated factors.

sd_l_noise: Gaussian zero mean noise std if no observation patterns are present.

mean_l: Gaussian mean for observation patterns.

sd_l: Gaussian std for observation patterns.

3. Return values:

X: the noisy dataX from Rn×l.

Y: the noise free data Y from Rn×l.

ZC: list where ith element gives samples belonging to ith bicluster.

LC: list where ith element gives observations belonging to ith bicluster.

Essentially the model is the sum of outer products of vectors:

X =
p∑
i=1

λi z
T
i + Υ ,

where the number of summands p is the number of biclusters. The matrix factorization is

X = Λ Z + Υ .

Here the λi are from Rn, the zi from Rl, and bothX and Y are from Rn×l.

Sequentially λi are generated using n, f2, of2, sd_l_noise, mean_l, sd_l. of2 gives the
minimal observations participating in a bicluster to which between 0 and n/f2 observations are
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added, where the number is uniformly chosen. sd_l_noise gives the noise of observations not
participating in the bicluster. mean_l and sd_l determines the Gaussian from which the values
are drawn for the observations that participate in the bicluster. The sign of the mean is randomly
chosen for each component.

Sequentially zi are generated using l, f1, of1, sd_z_noise, mean_z, sd_z. of1 gives the
minimal samples participating in a bicluster to which between 0 and l/f1 samples are added,
where the number is uniformly chosen. sd_z_noise gives the noise of samples not participating
in the bicluster. mean_z and sd_z determines the Gaussian from which the values are drawn for
the samples that participate in the bicluster.

Υ is the overall Gaussian zero mean noise generated by sd_noise.

Implementation in R .

EXAMPLE:

#---------------
# DEMO
#---------------

dat <- make_fabi_data(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

X <- dat[[1]]
Y <- dat[[2]]

myImagePlot(Y)
x11()
myImagePlot(X)

A.10 make_fabi_data_pos

Generation of bicluster data.

1. Usage: make_fabi_data_pos(n,l,p,f1,f2,of1,of2,sd_noise,sd_z_noise,
mean_z,sd_z,sd_l_noise,mean_l,sd_l)

2. Arguments:

n. number of observations.

l: number of samples.

p: number of biclusters.

f1: l/f1 max. additional samples are active in a bicluster.
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f2: n/f2 max. additional observations that form a pattern in a bicluster.

of1: minimal active samples in a bicluster.

of2: menial observations that form a pattern in a bicluster.

sd_noise: Gaussian zero mean noise std on data matrix.

sd_z_noise: Gaussian zero mean noise std for deactivated hidden factors.

mean_z: Gaussian mean for activated factors.

sd_z: Gaussian std for activated factors.

sd_l_noise: Gaussian zero mean noise std if no observation patterns are present.

mean_l: Gaussian mean for observation patterns.

sd_l: Gaussian std for observation patterns.

3. Return values:

X: the noisy dataX from Rn×l.

Y: the noise free data Y from Rn×l.

ZC: list where ith element gives samples belonging to ith bicluster.

LC: list where ith element gives observations belonging to ith bicluster.

Essentially the model is the sum of outer products of vectors:

X =
p∑
i=1

λi z
T
i + Υ ,

where the number of summands p is the number of biclusters. The matrix factorization is

X = Λ Z + Υ .

Here the λi are from Rn, the zi from Rl, and bothX and Y are from Rn×l.

Sequentially λi are generated using n, f2, of2, sd_l_noise, mean_l, sd_l. of2 gives the
minimal observations participating in a bicluster to which between 0 and n/f2 observations are
added, where the number is uniformly chosen. sd_l_noise gives the noise of observations not
participating in the bicluster. mean_l and sd_l determines the Gaussian from which the values
are drawn for the observations that participate in the bicluster. "POS": The sign of the mean is
fixed.

Sequentially zi are generated using l, f1, of1, sd_z_noise, mean_z, sd_z. of1 gives the
minimal samples participating in a bicluster to which between 0 and l/f1 samples are added,
where the number is uniformly chosen. sd_z_noise gives the noise of samples not participating
in the bicluster. mean_z and sd_z determines the Gaussian from which the values are drawn for
the samples that participate in the bicluster.

Υ is the overall Gaussian zero mean noise generated by sd_noise.

Implementation in R .

EXAMPLE:
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#---------------
# DEMO
#---------------

dat <- make_fabi_data_pos(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

X <- dat[[1]]
Y <- dat[[2]]

myImagePlot(Y)
x11()
myImagePlot(X)

A.11 make_fabi_data_blocks

Generation of bicluster data with bicluster blocks.

1. Usage: make_fabi_data_blocks(n,l,p,f1,f2,of1,of2,sd_noise,sd_z_noise,
mean_z,sd_z,sd_l_noise,mean_l,sd_l)

2. Arguments:

n: number of observations.

l: number of samples.

p: number of biclusters.

f1: l/f1 max. additional samples are active in a bicluster.

f2: n/f2 max. additional observations that form a pattern in a bicluster.

of1: minimal active samples in a bicluster.

of2: minimal observations that form a pattern in a bicluster.

sd_noise: Gaussian zero mean noise std on data matrix.

sd_z_noise: Gaussian zero mean noise std for deactivated hidden factors.

mean_z: Gaussian mean for activated factors.

sd_z: Gaussian std for activated factors.

sd_l_noise: Gaussian zero mean noise std if no observation patterns are present.

mean_l: Gaussian mean for observation patterns.

sd_l: Gaussian std for observation patterns.

3. Return Values:

X: the noisy dataX from Rn×l.
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Y: the noise free data Y from Rn×l.

ZC: list where ith element gives samples belonging to ith bicluster.

LC: list where ith element gives observations belonging to ith bicluster.

Bicluster data is generated for visualization because the biclusters are now in block format.
That means observations and samples that belong to a bicluster are consecutive. This allows visual
inspection because the use can identify blocks and whether they have been found or reconstructed.

Essentially the model is the sum of outer products of vectors:

X =
p∑
i=1

λi z
T
i + Υ ,

where the number of summands p is the number of biclusters. The matrix factorization is

X = Λ Z + Υ .

Here the λi are from Rn, the zi from Rl, and bothX and Y are from Rn×l.

Sequentially λi are generated using n, f2, of2, sd_l_noise, mean_l, sd_l. of2 gives the
minimal observations participating in a bicluster to which between 0 and n/f2 observations are
added, where the number is uniformly chosen. sd_l_noise gives the noise of observations not
participating in the bicluster. mean_l and sd_l determines the Gaussian from which the values
are drawn for the observations that participate in the bicluster. The sign of the mean is randomly
chosen for each component.

Sequentially zi are generated using l, f1, of1, sd_z_noise, mean_z, sd_z. of1 gives the
minimal samples participating in a bicluster to which between 0 and l/f1 samples are added,
where the number is uniformly chosen. sd_z_noise gives the noise of samples not participating
in the bicluster. mean_z and sd_z determines the Gaussian from which the values are drawn for
the samples that participate in the bicluster.

Υ is the overall Gaussian zero mean noise generated by sd_noise.

Implementation in R .

EXAMPLE:

#---------------
# DEMO
#---------------

dat <- make_fabi_data_blocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

Y <- dat[[1]]
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X <- dat[[2]]

myImagePlot(Y)
x11()
myImagePlot(X)

A.12 make_fabi_data_blocks_pos

Generation of bicluster data with bicluster blocks.

1. Usage: make_fabi_data_blocks_pos(n,l,p,f1,f2,of1,of2,sd_noise,
sd_z_noise,mean_z,sd_z,sd_l_noise,mean_l,sd_l)

2. Arguments:

n: number of observations.

l: number of samples.

p: number of biclusters.

f1: l/f1 max. additional samples are active in a bicluster.

f2: n/f2 max. additional observations that form a pattern in a bicluster.

of1: minimal active samples in a bicluster.

of2: minimal observations that form a pattern in a bicluster.

sd_noise: Gaussian zero mean noise std on data matrix.

sd_z_noise: Gaussian zero mean noise std for deactivated hidden factors.

mean_z: Gaussian mean for activated factors.

sd_z: Gaussian std for activated factors.

sd_l_noise: Gaussian zero mean noise std if no observation patterns are present.

mean_l: Gaussian mean for observation patterns.

sd_l: Gaussian std for observation patterns.

3. Return Values:

X: the noisy dataX from Rn×l.

Y: the noise free data Y from Rn×l.

ZC: list where ith element gives samples belonging to ith bicluster.

LC: list where ith element gives observations belonging to ith bicluster.
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Bicluster data is generated for visualization because the biclusters are now in block format.
That means observations and samples that belong to a bicluster are consecutive. This allows visual
inspection because the use can identify blocks and whether they have been found or reconstructed.

Essentially the model is the sum of outer products of vectors:

X =
p∑
i=1

λi z
T
i + Υ ,

where the number of summands p is the number of biclusters. The matrix factorization is

X = Λ Z + Υ .

Here the λi are from Rn, the zi from Rl, and bothX and Y are from Rn×l.

Sequentially λi are generated using n, f2, of2, sd_l_noise, mean_l, sd_l. of2 gives the
minimal observations participating in a bicluster to which between 0 and n/f2 observations are
added, where the number is uniformly chosen. sd_l_noise gives the noise of observations not
participating in the bicluster. mean_l and sd_l determines the Gaussian from which the values
are drawn for the observations that participate in the bicluster. "POS": The sign of the mean is
fixed.

Sequentially zi are generated using l, f1, of1, sd_z_noise, mean_z, sd_z. of1 gives the
minimal samples participating in a bicluster to which between 0 and l/f1 samples are added,
where the number is uniformly chosen. sd_z_noise gives the noise of samples not participating
in the bicluster. mean_z and sd_z determines the Gaussian from which the values are drawn for
the samples that participate in the bicluster.

Υ is the overall Gaussian zero mean noise generated by sd_noise.

Implementation in R .

EXAMPLE:

#---------------
# DEMO
#---------------

dat <- make_fabi_data_blocks_pos(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

Y <- dat[[1]]
X <- dat[[2]]

myImagePlot(Y)
x11()
myImagePlot(X)
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A.13 mfsc

Sparse Matrix Factorization for bicluster analysis (MFSC).

1. Usage: mfsc(X,p,sL,sZ,cyc=100,norm=1,center=2)

2. Arguments:

X: the data matrix.

p: number of hidden factor = number of biclusters.

sL: sparseness loadings.

sZ: sparseness factors.

cyc: maximal number of iterations.

norm: data normalization: default = 1 (yes), 0 (no).

center: data centering: 1 (mean), 2 (median), > 2 (mode), 0 (no); default 2.

3. Return Values:

L: Left matrix: Λ

Z: Right matrix: Z

Biclusters are found by sparse matrix factorization where both factors are sparse.

Essentially the model is the sum of outer products of vectors:

X =
p∑
i=1

λi z
T
i + Υ ,

where the number of summands p is the number of biclusters. The matrix factorization is

X = Λ Z + Υ .

No noise assumption: In contrast to factor analysis there is no noise assumption.

If the nonzero components of the sparse vectors are grouped together then the outer product
results in a matrix with a nonzero block and zeros elsewhere.

For a single data vector x that is

x =
p∑
i=1

λizi = Λz̃

Estimated Parameters: Λ and Z
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Estimated Biclusters: λi zTi Larges values give the bicluster (ideal the nonzero values).

The model selection is performed by a constraint optimization according to Hoyer (2004). The
Euclidean distance (the Frobenius norm) is minimized subject to sparseness constraints:

min
Λ,Z
‖X − Λ Z‖2F

subject to ‖Λ‖2F = 1

subject to ‖Λ‖1 = kL

subject to ‖Z‖2F = 1

subject to ‖Z‖1 = kZ

Model selection is done by gradient descent on the Euclidean objective and thereafter projec-
tion of single vectors of Λ and single vectors of Z to fulfill the sparseness constraints.

The projection minimize the Euclidean distance to the original vector given an l1-norm and an
l2-norm.

The projection is a convex quadratic problem which is solved iteratively where at each iteration
at least one component is set to zero. Instead of the l1-norm a sparseness measurement is used
which relates the l1-norm to the l2-norm:

sparseness(λi) =
√
n −

∑n
k=1 |λki| /

∑n
k=1 λ

2
ki√

n − 1

The code is implemented in R .

EXAMPLE:

#---------------
# TEST
#---------------

dat <- make_fabi_data_blocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

X <- dat[[1]]
Y <- dat[[2]]
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resEx <- mfsc(as.matrix(abs(X)),3,0.7,0.7)

#---------------
# DEMO
#---------------

dat <- make_fabi_data_blocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

X <- dat[[1]]
Y <- dat[[2]]

resToy <- mfsc(as.matrix(abs(X)),8,0.7,0.7)

rToy <- extract_plot(X,resToy$L,resToy$Z,ti="NMFSC",Y=Y)

A.14 myImagePlot

Plotting of a matrix.

1. Usage: myImagePlot(x,xLabels=NULL, yLabels=NULL, zlim=NULL, title=NULL)

2. Arguments:

x: the matrix.

xLabels: vector of strings to label the rows (default "rownames(x)").

yLabels: vector of strings to label the columns (default "colnames(x)").

zlim: vector containing a low and high value to use for the color scale.

title: title of the plot.

Plotting a table of numbers as an image using R .

The color scale is based on the highest and lowest values in the matrix.

Program has been obtained by http://www.phaget4.org/R/myImagePlot.R

EXAMPLE:

#---------------
# DEMO

http://www.phaget4.org/R/myImagePlot.R
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#---------------

dat <- make_fabi_data_blocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

X <- dat[[1]]
Y <- dat[[2]]

myImagePlot(X)

A.15 PlotBicluster

Plots a bicluster.

1. Usage: PlotBicluster(x,samples,observations,xLabels=NULL, yLabels=NULL,
zlim=NULL, title=NULL,x11b=TRUE)

2. Arguments:

x: data matrix with columns as samples and rows as observations.

samples: samples belonging to the bicluster.

observations: observations belonging to the bicluster.

xLabels: vector of strings to label the columns where "samples" are a subset (default
"colnames(x)").

yLabels: vector of strings to label the rows where "observations" are a subset (default
"rownames(x)").

zlim: vector containing a low and high value to use for the color scale.

title: title of the plot.

x11b: screen output or not.

Plots a bicluster.

Plot1: The data matrix is sorted such that the bicluster appear at the upper left corner.

The bicluster is marked by a rectangle.

Plot2: Only the bicluster is presented.

Implementation in R .

#---------------
# TEST
#---------------
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dat <- make_fabi_data_blocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

X <- dat[[1]]
Y <- dat[[2]]

resEx <- fabia(X,20,0.1,1.0,1.0,3)

rEx <- extract_bic(resEx$L,resEx$Z,lapla=resEx$lapla,Psi=resEx$Psi)

PlotBicluster(X,unlist(rEx$bic[1,5]),unlist(rEx$bic[1,3]),x11b=FALSE)

#---------------
# DEMO1
#---------------

dat <- make_fabi_data_blocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

X <- dat[[1]]
Y <- dat[[2]]

resToy <- fabia(X,200,0.4,1.0,1.0,13)

rToy <- extract_bic(resToy$L,resToy$Z,lapla=resToy$lapla,Psi=resToy$Psi)

PlotBicluster(X,unlist(rToy$bic[1,5]),unlist(rToy$bic[1,3]))

#---------------
# DEMO2
#---------------

data(Breast_A)

X <- as.matrix(XBreast)

resBreast <- fabia(X,200,0.1,1.0,1.0,5)
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rBreast <- extract_bic(resBreast$L,resBreast$Z,lapla=resBreast$lapla,Psi=resBreast$Psi)

PlotBicluster(X,unlist(rBreast$bic[1,5]),unlist(rBreast$bic[1,3]))

A.16 nmfdiv

Non-negative Matrix Factorization with Kullaback-Leibler divergence as objective.

1. Usage: nmfdiv(X,p,cyc=100)

2. Arguments:

X: the data matrix.

p: number of hidden factor.

cyc: maximal number of iterations.

3. Return Values:

L: Left matrix: Λ

Z: Right matrix: Z

X = Λ Z

X =
p∑
i=1

λi z
T
i

Estimated Parameters: Λ and Z

The model selection is performed according to Lee and Seung (1999, 2001).

objective:

D(A ‖ B) =
∑
ij

(
Aij log

Aij
Bij

+ Aij − Bij

)

update:

Lik = Lik

∑n
j=1 Zji Vjk / (Λ Z)jk∑n

j=1 Zji
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Zji = Zji

∑l
k=1 Lik Vjk / (Λ Z)jk∑l

k=1 Lik

or in matrix notation with “∗” and “/” as element-wise operators:

Λ = Λ ∗ ((X / (Λ Z)) t(Z)) / rowSums(Z)

Z = Z ∗ (t(Λ) (X / (Λ Z))) / colSums(Λ)

The code is implemented in R .

EXAMPLE:

#---------------
# TEST
#---------------

dat <- make_fabi_data_blocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

X <- dat[[1]]
Y <- dat[[2]]
X <- abs(X)
XX <- tcrossprod(X)
dXX <- 1/sqrt(diag(XX))
X <- dXX*X

resEx <- nmfdiv(as.matrix(abs(X)),3)

#---------------
# DEMO
#---------------

dat <- make_fabi_data_blocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

X <- dat[[1]]
Y <- dat[[2]]
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X <- abs(X)
XX <- tcrossprod(X)
dXX <- 1/sqrt(diag(XX))
X <- dXX*X

resToy <- nmfdiv(as.matrix(abs(X)),8)

rToy <- extract_plot(X,resToy$L,resToy$Z,ti="NMFDIV",Y=Y)

A.17 nmfeu

Non-negative Matrix Factorization with Euclidean distance as objective.

1. Usage: nmfeu(X,p,cyc=100)

2. Arguments:

X: the data matrix.

p: number of hidden factor.

cyc: maximal number of iterations.

3. Return Values:

L: Left matrix: Λ

Z: Right matrix: Z

X = Λ Z

X =
p∑
i=1

λi z
T
i

Estimated Parameters: Λ and Z

The model selection is performed according to Lee and Seung (2001); Paatero and Tapper
(1997).

objective:

‖A − B‖2F =
∑
ij

(Aij − Bij)
2
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update:

Lik = Lik

(
ΛT X

)
ik

(ΛT Λ Z)ik

Zji = Zji

(
X ZT

)
ji

(Λ Z ZT )ji

or in matrix notation with “∗” and “/” as element-wise operators:

Z = Z ∗ (t(Λ)X) / (t(Λ) Λ Z)

Λ = Λ ∗ (X t(Z)) / (Λ Z t(Z))

The code is implemented in R .

EXAMPLE:

#---------------
# TEST
#---------------

dat <- make_fabi_data_blocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

X <- dat[[1]]
Y <- dat[[2]]
X <- abs(X)
XX <- tcrossprod(X)
dXX <- 1/sqrt(diag(XX))
X <- dXX*X

resEx <- nmfeu(as.matrix(abs(X)),3)

#---------------
# DEMO
#---------------

dat <- make_fabi_data_blocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5,
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of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

X <- dat[[1]]
Y <- dat[[2]]
X <- abs(X)
XX <- tcrossprod(X)
dXX <- 1/sqrt(diag(XX))
X <- dXX*X

resToy <- nmfeu(as.matrix(abs(X)),8)

rToy <- extract_plot(X,resToy$L,resToy$Z,ti="NMFEU",Y=Y)

A.18 nmfsc

Non-negative Sparse Matrix Factorization with sparseness constraints.

1. Usage: nmfsc(X,p,sL,sZ,cyc=100)

2. Arguments:

X: the data matrix.

p: number of hidden factor = number of biclusters.

sL: sparseness loadings.

sZ: sparseness factors.

cyc: maximal number of iterations.

3. Return Values:

L: Left matrix: Λ

Z: Right matrix: Z

Essentially the model is the sum of outer products of vectors:

X =
p∑
i=1

λi z
T
i ,

where the number of summands p is the number of biclusters. The matrix factorization is

X = Λ Z .
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If the nonzero components of the sparse vectors are grouped together then the outer product
results in a matrix with a nonzero block and zeros elsewhere.

For a single data vector x that is

x =
p∑
i=1

λizi = Λz

Estimated Parameters: Λ and Z

Estimated Biclusters: λi zTi Larges values give the bicluster (ideal the nonzero values).

The model selection is performed by a constraint optimization according to Hoyer (2004). The
Euclidean distance (the Frobenius norm) is minimized subject to sparseness and non-negativity
constraints:

min
Λ,Z
‖x − Λ Z‖2F

subject to ‖Λ‖2F = 1

subject to ‖Λ‖1 = kL

subject to Λ ≥ 0

subject to ‖Z‖2F = 1

subject to ‖Z‖1 = kZ

subject to Z ≥ 0

Model selection is done by gradient descent on the Euclidean objective and thereafter projec-
tion of single vectors of Λ and single vectors of Z to fulfill the sparseness and non-negativity
constraints.

The projection minimize the Euclidean distance to the original vector given an l1-norm and an
l2-norm and enforcing non-negativity.

The projection is a convex quadratic problem which is solved iteratively where at each iteration
at least one component is set to zero. Instead of the l1-norm a sparseness measurement is used
which relates the l1-norm to the l2-norm:

sparseness(λi) =
√
n −

∑n
k=1 |λki| /

∑n
k=1 λ

2
ki√

n − 1

The code is implemented in R .

EXAMPLE:
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#---------------
# TEST
#---------------

dat <- make_fabi_data_blocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

X <- dat[[1]]
Y <- dat[[2]]
X <- abs(X)
XX <- tcrossprod(X)
dXX <- 1/sqrt(diag(XX))
X <- dXX*X

resEx <- nmfsc(as.matrix(abs(X)),3,0.7,0.7)

#---------------
# DEMO
#---------------

dat <- make_fabi_data_blocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

X <- dat[[1]]
Y <- dat[[2]]
X <- abs(X)
XX <- tcrossprod(X)
dXX <- 1/sqrt(diag(XX))
X <- dXX*X

resToy <- nmfsc(as.matrix(abs(X)),8,0.7,0.7)

rToy <- extract_plot(X,resToy$L,resToy$Z,ti="NMFSC",Y=Y)

A.19 nprojfunc

Projection of a vector to a sparse non-negative vector with given sparseness and given l2-norm.

1. Usage: nprojfunc(s, k1, k2)
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2. Arguments:

s: data vector.

k1: sparseness, l1 norm constraint.

k2: l2 norm constraint.

3. Return Values:

v: non-negative sparse projected vector.

The projection minimize the Euclidean distance to the original vector given an l1-norm and an
l2-norm and enforcing non-negativity.

The projection is a convex quadratic problem which is solved iteratively where at each iteration
at least one component is set to zero.

In the applications, instead of the l1-norm a sparseness measurement is used which relates the
l1-norm to the l2-norm:

sparseness(v) =

√
l −

∑l
j=1 |vj | /

∑l
j=1 v

2
j√

l − 1

The code is implemented in R .

EXAMPLE:

#---------------
# DEMO
#---------------

size <- 30
sparseness <- 0.7

s <- as.vector(rnorm(size))
sp <- sqrt(1.0*size)-(sqrt(1.0*size)-1.0)*sparseness

ss <- nprojfunc(s,k1=sp,k2=1)

s
ss

A.20 projfunc

Projection of a vector to a sparse vector with given sparseness and given l2-norm.
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1. Usage: projfunc(s, k1, k2)

2. Arguments:

s: data vector.

k1: sparseness, l1 norm constraint.

k2: l2 norm constraint.

3. Return Values:

v: sparse projected vector.

The projection is done according to Hoyer (2004): given an l1-norm and an l2-norm minimize
the Euclidean distance to the original vector. The projection is a convex quadratic problem which
is solved iteratively where at each iteration at least one component is set to zero.

In the applications, instead of the l1-norm a sparseness measurement is used which relates the
l1-norm to the l2-norm:

sparseness(v) =

√
l −

∑l
j=1 |vj | /

∑l
j=1 v

2
j√

l − 1

The code is implemented in R .

EXAMPLE:

#---------------
# DEMO
#---------------

size <- 30
sparseness <- 0.7

s <- as.vector(rnorm(size))
sp <- sqrt(1.0*size)-(sqrt(1.0*size)-1.0)*sparseness

ss <- projfunc(s,k1=sp,k2=1)

s
ss

A.21 estimateMode

Estimation of the modes of the rows of a matrix.
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1. Usage: estimateMode(X,maxiter=50,tol=0.001,alpha=0.1,a1=4.0,G1=FALSE)

2. Arguments:

X: matrix of which the modes of the rows are estimated.

maxiter: maximal number of iterations, default 50.

tol: tolerance for stopping, default 0.001.

alpha: learning rate, default 0.1.

a1: parameter of the width of the given distribution, default 4.

G1: kind of distribution, TRUE: 1
a1

ln(cosh(a1x)), FALSE:− 1
a1

exp(−a1
2 x

2), default
FALSE.

3. Return Values:

u: the vector of estimated modes.

xu: X − u the mode centered data.

The mode is estimated by contrast functions G1 1
a1

ln(cosh(a1x)) or G2 − 1
a1

exp(−a1
2 x

2).
The estimation is performed by gradient descent initialized by the median.

Implementation in R .

EXAMPLE:

#---------------
# DEMO
#---------------

dat <- make_fabi_data_blocks_pos(n = 100,l= 50,p = 10,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 2.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

X <- dat[[1]]

modes <- estimateMode(X)

modes$u - apply(X, 1, median)
%$

B Data Sets

B.1 Breast_A

Microarray data set of van’t Veer breast cancer.
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Microarray data from Broad Institute “Cancer Program Data Sets” which was produced by
van’t Veer et al. (2002) (http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi)
Array S54 was removed because it is an outlier.

Goal was to find a gene signature to predict the outcome of a cancer therapy that is to predict
whether metastasis will occur. A 70 gene signature has been discovered.

Here we want to find subclasses in the data set.

Hoshida et al. (2007) found 3 subclasses and verified that 50/61 cases from class 1 and 2 were
ER positive and only in 3/36 from class 3.

XBreast is the data set with 97 samples and 1213 genes, CBreast give the three subclasses
from Hoshida et al. (2007).

B.2 DLBCL_B

Microarray data set of Rosenwald diffuse large-B-cell lymphoma.

Microarray data from Broad Institute “Cancer Program Data Sets” which was produced by
Rosenwald et al. (2002) (http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi)

Goal was to predict the survival after chemotherapy

Hoshida et al. (2007) divided the data set into three classes:

OxPhos: oxidative phosphorylation

BCR: B-cell response

HR: host response

We want to identify these subclasses.

The data has 180 samples and 661 probe sets (genes).

XDLBCL is the data set with 180 samples and 661 genes, CDLBCL give the three subclasses from
Hoshida et al. (2007).

B.3 Multi_A

Microarray data set of Su on different mammalian tissue types.

Microarray data from Broad Institute “Cancer Program Data Sets” which was produced by Su
et al. (2002) (http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi)

Gene expression from human and mouse samples across a diverse array of tissues, organs,
and cell lines have been profiled. The goal was to have a reference for the normal mammalian
transcriptome.

Here we want to identify the subclasses which correspond to the tissue types.

The data has 102 samples and 5565 probe sets (genes).

XMulti is the data set with 102 samples and 5565 genes, CMulti give the four subclasses
corresponding to the tissue types.

http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi
http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi
http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi
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