PANELCN.MOPS REACHES CLINICAL STANDARDS AS A CNV DETECTION TOOL FOR TARGETED PANEL SEQUENCING DATA

Verena Haunschmid¹, Gundula Povysil¹, Julia Vogt², Katharina Wimmer², Günter Klambauer¹, Sepp Hochreiter¹ ¹ Institute of Bioinformatics, Johannes Kepler University Linz, Austria, ² Division of Human Genetics, Medical University Innsbruck, Austria

Abstract

Targeted panel sequencing is becoming increasingly important as a cost-effective strategy to identify disease-causing variants in clinical and research applications. While various copy number variation (CNV) detection methods exist for whole-genome and whole-exome sequencing data, highly accurate methods for panel sequencing data that are suitable for clinical purposes are still missing. The challenges with this kind of data are the small size and number of target regions as well as their uneven coverage. For clinical applications a method should furthermore be able to detect both short CNVs affecting only single exons or even just parts thereof as well as longer CNVs that affect multiple exons or even an entire gene.

We present panelcn.MOPS for copy number detection which extends our previously

RESULTS: SIMULATED DATA

Simulated data (resemble the characteristics of targeted panel sequencing data): 240 data sets, different frequencies of CNVs

Deletions:

Method	% CN2	Recall	Precision	Bal. Accuracy	F2-score
	90	1.0000	0.9996	1.0000	0.9999
	95	0.9998	0.9997	0.9998	0.9997
panelcn.MOPS	99	0.9998	0.9997	0.9998	0.9997
	Ø	0.9999	0.9997	0.9999	0.9998
	90	1.0000	0.9973	0.9997	0.9995
ExamoDonth	95	0.9980	1.0000	0.9982	0.9984
ExomeDepth	99	0.9915	1.0000	0.9924	0.9932
	Ø	0.9965	0.9991	0.9967	0.9970

developed method cn.MOPS to targeted panel sequencing data. The method is well suited for this type of data since it can estimate technical and biological characteristics influencing the read counts of each targeted region by a mixture of Poissons model. The design of the count windows, the read counting procedure, the parameters of the model and the segmentation algorithm have been optimized for targeted panel sequencing. cn.MOPS supplies integer copy numbers together with probabilities which inform users about the reliability of the copy number estimates.

We have tested panelcn.MOPS on simulated and real sequencing data. On 240 simulated data sets, that resembled the characteristics of targeted panel sequencing data, panelcn.MOPS has reached an average accuracy of 99.99%. The real sequencing data was enriched with the TruSight cancer panel that targets 94 cancer predisposition genes including *NF1/2*, *BRCA1/2* and *APC*. panelcn.MOPS detected 100% of CNVs known from previous MLPA analyses without any false positives. The size of the CNVs ranged from an 80bp deletion starting in the intron and affecting only part of one exon over duplications of several exons to deletions of 350kb affecting the entire gene. These results show that CNVs in targeted panel sequencing data can accurately be predicted with panelcn.MOPS. Consequently additional biotechnologies to detect CNVs, such as MLPA, can be omitted in order to reduce time and costs.

CN.MOPS

Mixture Of PoissonS for discovering Copy Number variations:

- low FDR by local modeling across samples
- model decomposes read count variation into:
- noise variation (Poisson)
- copy number variation (mixture components)

Duplications:

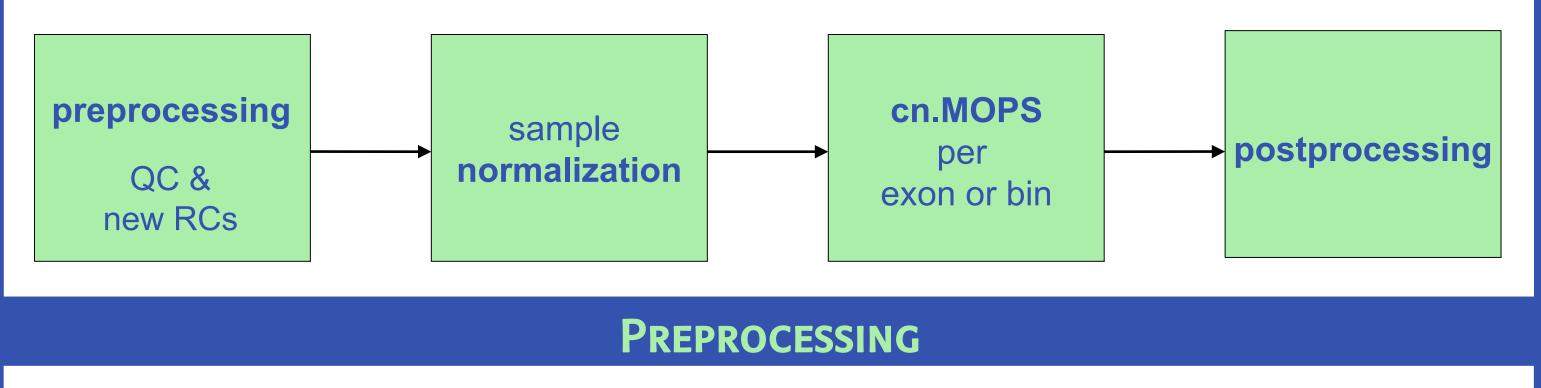
Method	% CN2	Recall	Precision	Bal. Accuracy	F2-score
	90	0.9979	0.9919	0.9973	0.9967
	95	0.9979	0.9919	0.9973	0.9967
panelcn.MOPS	99	1.0000	0.9991	0.9999	0.9998
	Ø	0.9986	0.9943	0.9982	0.9977
	90	0.9973	0.9841	0.9959	0.9944
EvemeDenth	95	0.9973	0.9841	0.9959	0.9944
ExomeDepth	99	0.7988	1.0000	0.8152	0.8317
	Ø	0.9311	0.9894	0.9357	0.9402

RESULTS: CANCER PREDISPOSITION GENE PANEL

TruSight cancer panel:

- targets 94 cancer predisposition genes
- e.g.: *NF1/2*, *BRCA1/2*, *APC*, *MSH2/6*, *MLH1* and *PMS2*

36 samples:


- 5 samples excluded due to poor quality
- 16 normal samples
- 13 deletions

Best performance on

- Whole-Genome Sequencing data (1000 Genomes) and
- Whole-Exome Sequencing data (intellectually disability, ASD, ...)

PANELCN.MOPS

- extension of cn.MOPS for targeted panel sequencing data
- special preprocessing: quality control & read counting
- **binning option:** count reads in small overlapping bins (30-50bp) to increase resolution
- optimized parameters
- special postprocessing instead of standard segmentation
- filter for displaying CNVs only for genes of interest

Quality control: exclude

- **exons** with median read count (RC) across all samples < 30 (recommended threshold)
- samples with median RC across all exons more than 1SD lower than median of all samples

Read counting: adapted to characteristics of targeted panel sequencing data

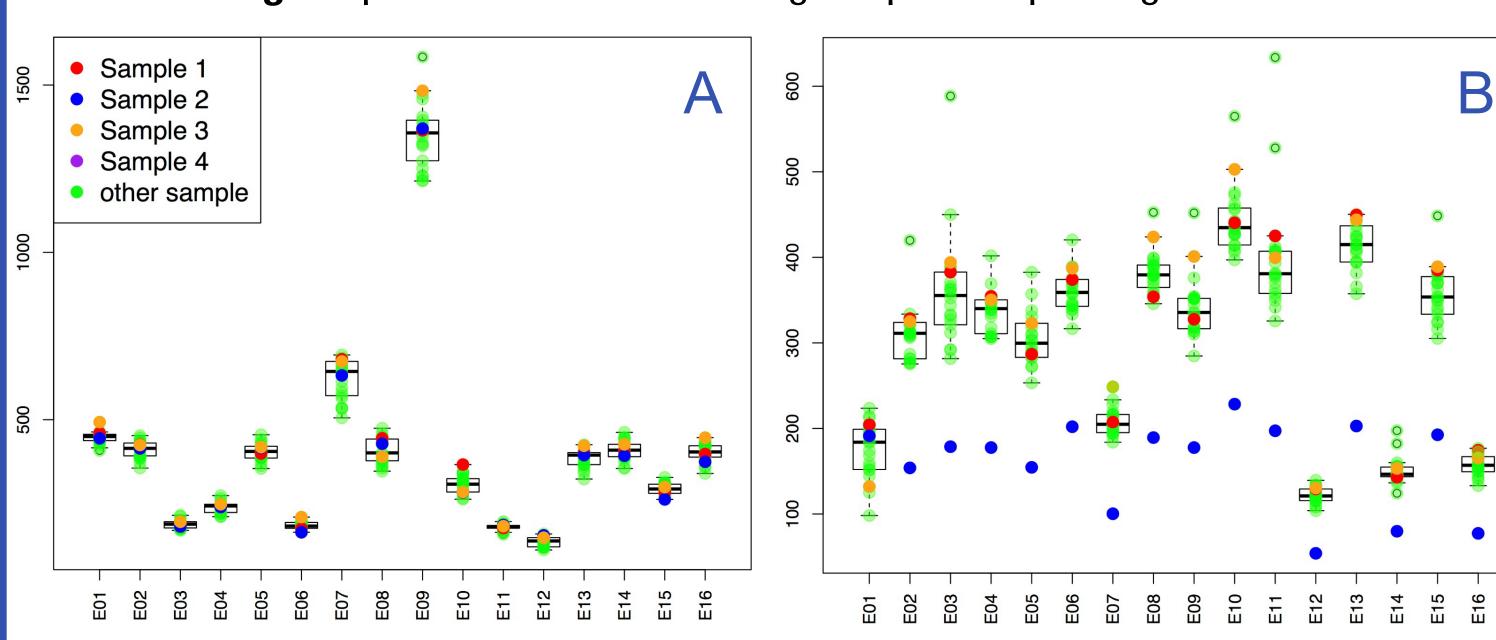
2 duplications

Size of CNVs:

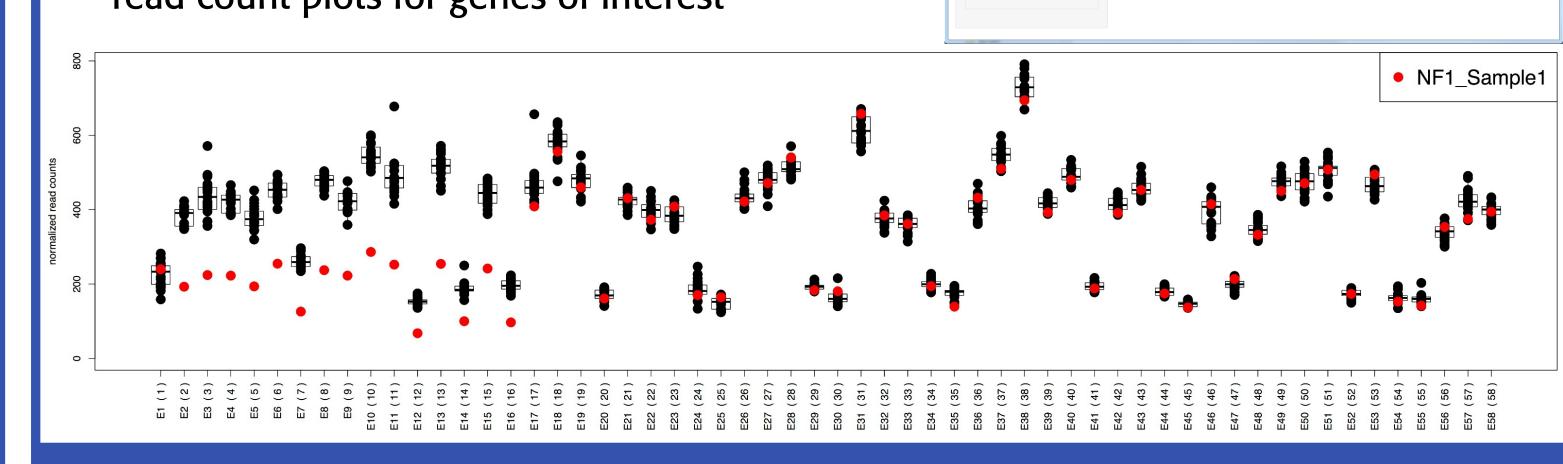
- Deletions: 80 bp (37 bp overlapping with ROI) 350 kbp (whole NF1 gene)
- Duplications: 1 kbp 80 kbp

Deletions:

	TP	FP	TN	FN	Recall	Precision	Bal. Acc.	F2-score
panelcn.MOPS	13	0	18	0	1	1	1	1
ExomeDepth	8	0	18	5	0.6154	1	0.8077	0.6667


Duplications:

	TP	FP	TN	FN	Recall	Precision	Bal. Acc.	F2-score
panelcn.MOPS	2	0	29	0	1	1	1	1
ExomeDepth	2	0	29	0	1	1	1	1


GRAPHICAL USER INTERFACE

- standalone app for better user-experience
- based on R shiny
- simple installer for Windows
- includes quality control
- option for binning
- option for building up control database
- reports only CNVs for genes of interest
- results exportable as .csv
- read count plots for genes of interest

	Files Results Cor	ntrol Base Plot		
Control base options	Graph options		PDF options	
Create New Database	Show legend		PDF Width	
Load Control Base	Select gene		10 25	100
	BRCA1	-	10 19 28 37 48 5	64 73 82 91 100
	Select windows		Save as PDF	
Parameters	0	22		
AIP A BRCA1 A		22		
APC ATM				
BAP1				
BMPR1, DRCA2	8 -			BRCA1_sample1.bam
BRIP1 BUB1B - C	ō			
	e o o unts			Ŧ
Minimum median RC / exon	o -			
Minimum median RC / exon	- pa			
	ed read 400 L		. т	
0 30 100 0 10 20 30 40 50 60 70 80 90 100	irmalized read. 400 1	∔ '		
0 <u>30</u> 100	200 ourits 200 soo	₄ ↓ ↓ ↓	╪⋣ [●] ≞ ∔	+. + ⁺ ≠+

Read counts for exons 1-16 of the NF1 gene. Sample 2 (blue) has a deletion from E02 – E16. Panel A - WGS RC method: deletion can not be detected Panel B - new RC method: deletion clearly visible

CONCLUSION

- panelcn.MOPS for CNV detection in targeted panel sequencing data
- superiority shown on simulated and real data
- GUI available for better usability

Klambauer G et al. (2012) cn.MOPS: mixture of Poissons for discovering copy number variations in next generation sequencing data with a low false discovery rate. *Nucleic Acids Res* 40(9):e69.

