Deep Learning and Neural Networks (2KV)

Course no.: 365.093
Lecturer: Thomas Unterthiner
Times/locations: Thur 10:15-11:45, room see KUSSS
Start: Thur, March 9, 2017
Mode: KV, 2h, weekly
Registration: KUSSS


In recent years, Deep Learning has emerged as one of the most promising Machine Learning techniques. It is by far the best known method for image recognition, has has increased the performance in speech recognition by a large margin and powers the current Android phone voice recognition, it has been used to automatically translate from one language to another, to drive autonomous cars, to predict the biological activity of small chemical compounds, to automatically learn an AI for video games and much more.

This class explains the methods behind Deep Learning and its applications. Both mathematical details as well as practical aspects are shown. Students will implement the algorithms for performing classification and regression tasks, and try it out on applications such as image classification or audio compression. After attending the class, students should have an thorough understanding of how deep neural nets work, should be able to understand the current research literature on the topic and apply Deep Learning to new problems.

Basic knowledge of machine learning is expected, as well as familiarity with basic linear algebra, calculus and statistics. All programming examples and homework problems will be in Python.